基于部分观测的在线贝叶斯低秩子空间学习

Paris V. Giampouras, A. Rontogiannis, K. Themelis, K. Koutroumbas
{"title":"基于部分观测的在线贝叶斯低秩子空间学习","authors":"Paris V. Giampouras, A. Rontogiannis, K. Themelis, K. Koutroumbas","doi":"10.1109/EUSIPCO.2015.7362840","DOIUrl":null,"url":null,"abstract":"Learning the underlying low-dimensional subspace from streaming incomplete high-dimensional observations data has attracted considerable attention lately. In this paper, we present a new computationally efficient Bayesian scheme for online low-rank subspace learning and matrix completion. The proposed scheme builds upon a properly defined hierarchical Bayesian model that explicitly imposes low rank to the latent subspace by assigning sparsity promoting Student-t priors to the columns of the subspace matrix. The new algorithm is fully automated and as corroborated by numerical simulations, provides higher estimation accuracy and a better estimate of the true subspace rank compared to state of the art methods.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Online Bayesian low-rank subspace learning from partial observations\",\"authors\":\"Paris V. Giampouras, A. Rontogiannis, K. Themelis, K. Koutroumbas\",\"doi\":\"10.1109/EUSIPCO.2015.7362840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning the underlying low-dimensional subspace from streaming incomplete high-dimensional observations data has attracted considerable attention lately. In this paper, we present a new computationally efficient Bayesian scheme for online low-rank subspace learning and matrix completion. The proposed scheme builds upon a properly defined hierarchical Bayesian model that explicitly imposes low rank to the latent subspace by assigning sparsity promoting Student-t priors to the columns of the subspace matrix. The new algorithm is fully automated and as corroborated by numerical simulations, provides higher estimation accuracy and a better estimate of the true subspace rank compared to state of the art methods.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

从不完整的高维观测数据流中学习底层的低维子空间近年来引起了人们的广泛关注。本文提出了一种新的计算效率高的贝叶斯算法,用于在线低秩子空间学习和矩阵补全。提出的方案建立在一个适当定义的层次贝叶斯模型上,该模型通过为子空间矩阵的列分配促进Student-t先验的稀疏性来显式地对潜在子空间施加低秩。新算法是完全自动化的,并经数值模拟证实,与最先进的方法相比,它提供了更高的估计精度和更好的真实子空间秩估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Bayesian low-rank subspace learning from partial observations
Learning the underlying low-dimensional subspace from streaming incomplete high-dimensional observations data has attracted considerable attention lately. In this paper, we present a new computationally efficient Bayesian scheme for online low-rank subspace learning and matrix completion. The proposed scheme builds upon a properly defined hierarchical Bayesian model that explicitly imposes low rank to the latent subspace by assigning sparsity promoting Student-t priors to the columns of the subspace matrix. The new algorithm is fully automated and as corroborated by numerical simulations, provides higher estimation accuracy and a better estimate of the true subspace rank compared to state of the art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信