Ravishankar Rao, S. Vrudhula, Krzysztof S. Berezowski
{"title":"采用线程迁移的多核处理器设计空间探索的分析结果","authors":"Ravishankar Rao, S. Vrudhula, Krzysztof S. Berezowski","doi":"10.1145/1393921.1393981","DOIUrl":null,"url":null,"abstract":"Migrating threads away from the hot cores in a multicore processor allows them to operate at up to higher speeds. While this technique has already attracted a lot of research effort, the majority of thread migration studies are simulation-based. Although they are valuable for micro-architectural level optimization, they require prohibitively long simulation times, and hence have limited value for early design space exploration. We derive closed form expressions for the steady-state throughput of a multicore processor that employs thread migration and throttling for thermal management. These expressions can be evaluated under a millisecond (vs days for cycle-accurate simulation), and allow designers greater flexibility in evaluating the trade-offs involved in implementing thread migration on-chip. We also developed a system-level power/thermal simulator that we used to validate the analytical results.","PeriodicalId":166672,"journal":{"name":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Analytical results for design space exploration of multi-core processors employing thread migration\",\"authors\":\"Ravishankar Rao, S. Vrudhula, Krzysztof S. Berezowski\",\"doi\":\"10.1145/1393921.1393981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Migrating threads away from the hot cores in a multicore processor allows them to operate at up to higher speeds. While this technique has already attracted a lot of research effort, the majority of thread migration studies are simulation-based. Although they are valuable for micro-architectural level optimization, they require prohibitively long simulation times, and hence have limited value for early design space exploration. We derive closed form expressions for the steady-state throughput of a multicore processor that employs thread migration and throttling for thermal management. These expressions can be evaluated under a millisecond (vs days for cycle-accurate simulation), and allow designers greater flexibility in evaluating the trade-offs involved in implementing thread migration on-chip. We also developed a system-level power/thermal simulator that we used to validate the analytical results.\",\"PeriodicalId\":166672,\"journal\":{\"name\":\"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1393921.1393981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the 13th international symposium on Low power electronics and design (ISLPED '08)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1393921.1393981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analytical results for design space exploration of multi-core processors employing thread migration
Migrating threads away from the hot cores in a multicore processor allows them to operate at up to higher speeds. While this technique has already attracted a lot of research effort, the majority of thread migration studies are simulation-based. Although they are valuable for micro-architectural level optimization, they require prohibitively long simulation times, and hence have limited value for early design space exploration. We derive closed form expressions for the steady-state throughput of a multicore processor that employs thread migration and throttling for thermal management. These expressions can be evaluated under a millisecond (vs days for cycle-accurate simulation), and allow designers greater flexibility in evaluating the trade-offs involved in implementing thread migration on-chip. We also developed a system-level power/thermal simulator that we used to validate the analytical results.