28纳米CMOS中嵌入尖峰压缩的49通道神经记录ASIC的初步结果

W. Lemaire, Esmaeil Ranjbar Koleibi, Takwa Omrani, Maher Benhouria, K. Koua, Charles Quesnel, Louis-Philippe Gauthier, Jérémy Ménard, Keven Gagnon, S. Roy, R. Fontaine
{"title":"28纳米CMOS中嵌入尖峰压缩的49通道神经记录ASIC的初步结果","authors":"W. Lemaire, Esmaeil Ranjbar Koleibi, Takwa Omrani, Maher Benhouria, K. Koua, Charles Quesnel, Louis-Philippe Gauthier, Jérémy Ménard, Keven Gagnon, S. Roy, R. Fontaine","doi":"10.1109/NEWCAS52662.2022.9842184","DOIUrl":null,"url":null,"abstract":"Neural interfaces allow better understanding of the brain by precisely measuring its activity, down to the level of single neurons. However, recording a high number of neurons requires a high number of analog-to-digital converters that generate a massive amount of data, making wireless transmission difficult. To solve this, we designed a neural recording application specific integrated circuit (ASIC) comprising a single ramp analog-to-digital converter (ADC) and a spike-by-spike digital compression circuit based on principal component analysis (PCA). The ASIC comprises 49 channels (each occupying an on-chip area of 50 × 60 µm2), a simulated noise of 12.3 µV RMS, and a power consumption of 4.6 µW. The circuit measures 1370 × 1370 µm2 and consumes 828 µW. This paper presents the architecture and preliminary performance results of the neural recording ASIC and its compression circuit.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary Results from a 49-Channel Neural Recording ASIC with Embedded Spike Compression in 28 nm CMOS\",\"authors\":\"W. Lemaire, Esmaeil Ranjbar Koleibi, Takwa Omrani, Maher Benhouria, K. Koua, Charles Quesnel, Louis-Philippe Gauthier, Jérémy Ménard, Keven Gagnon, S. Roy, R. Fontaine\",\"doi\":\"10.1109/NEWCAS52662.2022.9842184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural interfaces allow better understanding of the brain by precisely measuring its activity, down to the level of single neurons. However, recording a high number of neurons requires a high number of analog-to-digital converters that generate a massive amount of data, making wireless transmission difficult. To solve this, we designed a neural recording application specific integrated circuit (ASIC) comprising a single ramp analog-to-digital converter (ADC) and a spike-by-spike digital compression circuit based on principal component analysis (PCA). The ASIC comprises 49 channels (each occupying an on-chip area of 50 × 60 µm2), a simulated noise of 12.3 µV RMS, and a power consumption of 4.6 µW. The circuit measures 1370 × 1370 µm2 and consumes 828 µW. This paper presents the architecture and preliminary performance results of the neural recording ASIC and its compression circuit.\",\"PeriodicalId\":198335,\"journal\":{\"name\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS52662.2022.9842184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过精确测量大脑的活动,神经接口可以更好地了解大脑,精确到单个神经元的水平。然而,记录大量的神经元需要大量的模数转换器,从而产生大量的数据,这使得无线传输变得困难。为了解决这个问题,我们设计了一个神经记录应用专用集成电路(ASIC),包括一个单斜坡模数转换器(ADC)和一个基于主成分分析(PCA)的逐峰数字压缩电路。ASIC包括49个通道(每个通道的片上面积为50 × 60µm2),模拟噪声为12.3µV RMS,功耗为4.6µW。电路尺寸为1370 × 1370µm2,功耗为828µW。本文介绍了神经记录专用集成电路及其压缩电路的结构和初步性能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary Results from a 49-Channel Neural Recording ASIC with Embedded Spike Compression in 28 nm CMOS
Neural interfaces allow better understanding of the brain by precisely measuring its activity, down to the level of single neurons. However, recording a high number of neurons requires a high number of analog-to-digital converters that generate a massive amount of data, making wireless transmission difficult. To solve this, we designed a neural recording application specific integrated circuit (ASIC) comprising a single ramp analog-to-digital converter (ADC) and a spike-by-spike digital compression circuit based on principal component analysis (PCA). The ASIC comprises 49 channels (each occupying an on-chip area of 50 × 60 µm2), a simulated noise of 12.3 µV RMS, and a power consumption of 4.6 µW. The circuit measures 1370 × 1370 µm2 and consumes 828 µW. This paper presents the architecture and preliminary performance results of the neural recording ASIC and its compression circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信