{"title":"基于宽带输入匹配的SiGe低噪声放大器设计方法","authors":"Zhe Chen, Hao Gao, P. Baltus","doi":"10.1109/NORCHIP.2018.8573488","DOIUrl":null,"url":null,"abstract":"This paper investigates the feasibility of wideband low-noise amplifiers in bipolar silicon-germanium IC technology. Three different design techniques are compared and the most promising one is analyzed in detail and examined on a design example. We propose a design approach based on an LC-ladder structure as the input matching network. Used in combination with the cascode structure amplifier with inductive degeneration, the dual-LC tank employs two resonant tanks so as to achieve wideband input power matching and noise matching simultaneously. Following the design procedure described in the paper, a 20–40 GHz low noise amplifier is designed and the simulation results are provided to verify the proposed approach.","PeriodicalId":152077,"journal":{"name":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Design Approach for SiGe Low-Noise Amplifiers Using Wideband Input Matching\",\"authors\":\"Zhe Chen, Hao Gao, P. Baltus\",\"doi\":\"10.1109/NORCHIP.2018.8573488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the feasibility of wideband low-noise amplifiers in bipolar silicon-germanium IC technology. Three different design techniques are compared and the most promising one is analyzed in detail and examined on a design example. We propose a design approach based on an LC-ladder structure as the input matching network. Used in combination with the cascode structure amplifier with inductive degeneration, the dual-LC tank employs two resonant tanks so as to achieve wideband input power matching and noise matching simultaneously. Following the design procedure described in the paper, a 20–40 GHz low noise amplifier is designed and the simulation results are provided to verify the proposed approach.\",\"PeriodicalId\":152077,\"journal\":{\"name\":\"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NORCHIP.2018.8573488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHIP.2018.8573488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Design Approach for SiGe Low-Noise Amplifiers Using Wideband Input Matching
This paper investigates the feasibility of wideband low-noise amplifiers in bipolar silicon-germanium IC technology. Three different design techniques are compared and the most promising one is analyzed in detail and examined on a design example. We propose a design approach based on an LC-ladder structure as the input matching network. Used in combination with the cascode structure amplifier with inductive degeneration, the dual-LC tank employs two resonant tanks so as to achieve wideband input power matching and noise matching simultaneously. Following the design procedure described in the paper, a 20–40 GHz low noise amplifier is designed and the simulation results are provided to verify the proposed approach.