基于FPGA的粒子滤波跟踪应用的优化实现

Amin Jarrah, M. Jamali, Seyyed Soheil Sadat Hosseini
{"title":"基于FPGA的粒子滤波跟踪应用的优化实现","authors":"Amin Jarrah, M. Jamali, Seyyed Soheil Sadat Hosseini","doi":"10.1109/NAECON.2014.7045808","DOIUrl":null,"url":null,"abstract":"Particle filter has been proven to be a very effective method for identifying targets in non-linear and non-Gaussian environment. However, particle filter is computationally intensive. So, particle filter has been implemented on FPGA by exploiting parallel and pipelining approaches to reduce the computational burden. Our optimized FPGA implementation improves up to twelve times speed up. Also more speed ups are achieved with increasing number of particles.","PeriodicalId":318539,"journal":{"name":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Optimized FPGA based implementation of particle filter for tracking applications\",\"authors\":\"Amin Jarrah, M. Jamali, Seyyed Soheil Sadat Hosseini\",\"doi\":\"10.1109/NAECON.2014.7045808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Particle filter has been proven to be a very effective method for identifying targets in non-linear and non-Gaussian environment. However, particle filter is computationally intensive. So, particle filter has been implemented on FPGA by exploiting parallel and pipelining approaches to reduce the computational burden. Our optimized FPGA implementation improves up to twelve times speed up. Also more speed ups are achieved with increasing number of particles.\",\"PeriodicalId\":318539,\"journal\":{\"name\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NAECON 2014 - IEEE National Aerospace and Electronics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2014.7045808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAECON 2014 - IEEE National Aerospace and Electronics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2014.7045808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

粒子滤波已被证明是一种在非线性和非高斯环境下非常有效的目标识别方法。然而,粒子滤波的计算量很大。因此,利用并行和流水线方法在FPGA上实现粒子滤波,以减少计算量。我们优化的FPGA实现将速度提高了12倍。此外,随着粒子数量的增加,速度也会提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimized FPGA based implementation of particle filter for tracking applications
Particle filter has been proven to be a very effective method for identifying targets in non-linear and non-Gaussian environment. However, particle filter is computationally intensive. So, particle filter has been implemented on FPGA by exploiting parallel and pipelining approaches to reduce the computational burden. Our optimized FPGA implementation improves up to twelve times speed up. Also more speed ups are achieved with increasing number of particles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信