兼容EMV集成电路银行卡的JAVA CARD协处理器设计与FPGA实现

Di Wu, Liji Wu, Xiangmin Zhang
{"title":"兼容EMV集成电路银行卡的JAVA CARD协处理器设计与FPGA实现","authors":"Di Wu, Liji Wu, Xiangmin Zhang","doi":"10.1109/ASICON.2009.5351533","DOIUrl":null,"url":null,"abstract":"To meet the urgent need of transferring magnetic stripe bankcard to IC bankcard, a 16-bit low power JAVA CARD coprocessor for EMV compatible IC bankcard is designed and implemented by FPGA. In order to speed up the running of the JAVA CARD applets, a novel 5-stage pipelined JAVA CARD coprocessor is achieved with pure logic circuits, which carries out the execution of 88 instructions out of 134 defined in the JAVA CARD Virtual Machine Specification 3.0 Classic Edition, while the remaining instructions are processed by the main 32-bit RISC processor. A pre-fetch instruction buffer and stack-top-register are used to ensure the fluency of the pipeline for accelerating the coprocessor. The design is verified to be feasible for the need of IC bankcard by FPGA and proved significantly faster than the regular software virtual machine, while remaining in a low power consumption level1.","PeriodicalId":446584,"journal":{"name":"2009 IEEE 8th International Conference on ASIC","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and FPGA implementation of JAVA CARD coprocessor for EMV compatible IC bankcard\",\"authors\":\"Di Wu, Liji Wu, Xiangmin Zhang\",\"doi\":\"10.1109/ASICON.2009.5351533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To meet the urgent need of transferring magnetic stripe bankcard to IC bankcard, a 16-bit low power JAVA CARD coprocessor for EMV compatible IC bankcard is designed and implemented by FPGA. In order to speed up the running of the JAVA CARD applets, a novel 5-stage pipelined JAVA CARD coprocessor is achieved with pure logic circuits, which carries out the execution of 88 instructions out of 134 defined in the JAVA CARD Virtual Machine Specification 3.0 Classic Edition, while the remaining instructions are processed by the main 32-bit RISC processor. A pre-fetch instruction buffer and stack-top-register are used to ensure the fluency of the pipeline for accelerating the coprocessor. The design is verified to be feasible for the need of IC bankcard by FPGA and proved significantly faster than the regular software virtual machine, while remaining in a low power consumption level1.\",\"PeriodicalId\":446584,\"journal\":{\"name\":\"2009 IEEE 8th International Conference on ASIC\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 8th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASICON.2009.5351533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 8th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASICON.2009.5351533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为满足磁条银行卡向IC银行卡转换的迫切需要,设计并实现了一种兼容EMV的IC银行卡的16位低功耗JAVA CARD协处理器。为了提高JAVA CARD小程序的运行速度,采用纯逻辑电路实现了一种新型的5级流水线JAVA CARD协处理器,执行JAVA CARD虚拟机规范3.0经典版中定义的134条指令中的88条,其余指令由32位RISC主处理器处理。预取指令缓冲区和栈顶寄存器用于保证流水线的流畅性,以加速协处理器。通过FPGA验证了该设计是可行的,并且比常规软件虚拟机的速度要快得多,同时保持在低功耗水平1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and FPGA implementation of JAVA CARD coprocessor for EMV compatible IC bankcard
To meet the urgent need of transferring magnetic stripe bankcard to IC bankcard, a 16-bit low power JAVA CARD coprocessor for EMV compatible IC bankcard is designed and implemented by FPGA. In order to speed up the running of the JAVA CARD applets, a novel 5-stage pipelined JAVA CARD coprocessor is achieved with pure logic circuits, which carries out the execution of 88 instructions out of 134 defined in the JAVA CARD Virtual Machine Specification 3.0 Classic Edition, while the remaining instructions are processed by the main 32-bit RISC processor. A pre-fetch instruction buffer and stack-top-register are used to ensure the fluency of the pipeline for accelerating the coprocessor. The design is verified to be feasible for the need of IC bankcard by FPGA and proved significantly faster than the regular software virtual machine, while remaining in a low power consumption level1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信