用于DNN加速器的可变精度,混合固定/浮点MAC单元

Ali Talebi, Morteza Mousazadeh
{"title":"用于DNN加速器的可变精度,混合固定/浮点MAC单元","authors":"Ali Talebi, Morteza Mousazadeh","doi":"10.1109/IICM57986.2022.10152326","DOIUrl":null,"url":null,"abstract":"Artificial intelligence has become more popular than ever in past few years. Deep neural networks are being used in various use cases e.g., image processing, data analysis and etc. MAC operations are the core of DNNs thus making MAC units a very crucial element of any DNN accelerator. This paper presents a Variable precision, mixed fixed/floating point MAC unit capable of performing single precision floating-point MAC. Also, proposed MAC unit features additional modes for performing one 32-bit fixed-point MAC or two concurrent 16-bit fixed-point MACs or four concurrent 8-bit fixed-point MACs. Aside from high flexibility in number precision, proposed MAC unit uses recurring Karatsuba algorithm to implement higher bit-count multiplication only by using 8-bit multiplier and 8-bit adders. Proposed MAC unit has achieved 44.64 MOPS in 32-bit floating-point, 44.64 MOPS in 32-bit fixed-point, 89.29 MOPS in 16-bit fixed-point and 178.57 MOPS in 8-bit fixed-point on FPGA board ‘NEXYS 4 DDR’ featuring XILINX ‘xc7al00tcsg324-1’ FPGA chip.","PeriodicalId":131546,"journal":{"name":"2022 Iranian International Conference on Microelectronics (IICM)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variable precision, mixed fixed/floating point MAC unit for DNN accelerators\",\"authors\":\"Ali Talebi, Morteza Mousazadeh\",\"doi\":\"10.1109/IICM57986.2022.10152326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence has become more popular than ever in past few years. Deep neural networks are being used in various use cases e.g., image processing, data analysis and etc. MAC operations are the core of DNNs thus making MAC units a very crucial element of any DNN accelerator. This paper presents a Variable precision, mixed fixed/floating point MAC unit capable of performing single precision floating-point MAC. Also, proposed MAC unit features additional modes for performing one 32-bit fixed-point MAC or two concurrent 16-bit fixed-point MACs or four concurrent 8-bit fixed-point MACs. Aside from high flexibility in number precision, proposed MAC unit uses recurring Karatsuba algorithm to implement higher bit-count multiplication only by using 8-bit multiplier and 8-bit adders. Proposed MAC unit has achieved 44.64 MOPS in 32-bit floating-point, 44.64 MOPS in 32-bit fixed-point, 89.29 MOPS in 16-bit fixed-point and 178.57 MOPS in 8-bit fixed-point on FPGA board ‘NEXYS 4 DDR’ featuring XILINX ‘xc7al00tcsg324-1’ FPGA chip.\",\"PeriodicalId\":131546,\"journal\":{\"name\":\"2022 Iranian International Conference on Microelectronics (IICM)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Iranian International Conference on Microelectronics (IICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICM57986.2022.10152326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Iranian International Conference on Microelectronics (IICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICM57986.2022.10152326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能在过去几年比以往任何时候都更受欢迎。深度神经网络被用于各种用例,如图像处理、数据分析等。MAC操作是深度神经网络的核心,因此MAC单元是任何深度神经网络加速器的一个非常关键的元素。本文提出了一种可变精度的固定/浮点混合MAC单元,能够执行单精度浮点MAC。此外,所提出的MAC单元还具有执行一个32位定点MAC或两个并发16位定点MAC或四个并发8位定点MAC的附加模式。除了在数字精度上具有很高的灵活性外,所提出的MAC单元使用循环Karatsuba算法,仅通过使用8位乘法器和8位加法器来实现更高的位计数乘法。所提出的MAC单元在采用XILINX“xc7al00tcsg324-1”FPGA芯片的“NEXYS 4 DDR”FPGA板上实现了32位浮点44.64 MOPS、32位定点44.64 MOPS、16位定点89.29 MOPS和8位定点178.57 MOPS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variable precision, mixed fixed/floating point MAC unit for DNN accelerators
Artificial intelligence has become more popular than ever in past few years. Deep neural networks are being used in various use cases e.g., image processing, data analysis and etc. MAC operations are the core of DNNs thus making MAC units a very crucial element of any DNN accelerator. This paper presents a Variable precision, mixed fixed/floating point MAC unit capable of performing single precision floating-point MAC. Also, proposed MAC unit features additional modes for performing one 32-bit fixed-point MAC or two concurrent 16-bit fixed-point MACs or four concurrent 8-bit fixed-point MACs. Aside from high flexibility in number precision, proposed MAC unit uses recurring Karatsuba algorithm to implement higher bit-count multiplication only by using 8-bit multiplier and 8-bit adders. Proposed MAC unit has achieved 44.64 MOPS in 32-bit floating-point, 44.64 MOPS in 32-bit fixed-point, 89.29 MOPS in 16-bit fixed-point and 178.57 MOPS in 8-bit fixed-point on FPGA board ‘NEXYS 4 DDR’ featuring XILINX ‘xc7al00tcsg324-1’ FPGA chip.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信