基于RGA的加权主频率分量脑电信号特征提取方法的提出

S. Ito, Y. Mitsukura, H. Miyamura, T. Saito, M. Fukumi
{"title":"基于RGA的加权主频率分量脑电信号特征提取方法的提出","authors":"S. Ito, Y. Mitsukura, H. Miyamura, T. Saito, M. Fukumi","doi":"10.1109/SICE.2006.315293","DOIUrl":null,"url":null,"abstract":"An EEG has frequency components which can describe most of the significant features. These combinations are often unique like individual human beings and yet they have underlying basic features. These frequency components are contained the important and/or not so important components, and then each importance of these frequency components are different. The real-coded genetic algorithm (: RGA) is used for selecting and being weighted the principal characteristic frequency components. We attempt to construct mental change appearance model (: MCAM) of only one measurement point. In order to show the effectiveness of the proposed method, computer simulations are carried out by using real data","PeriodicalId":309260,"journal":{"name":"2006 SICE-ICASE International Joint Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Proposal of the EEG Characteristics Extraction Method in Weighted Principal Frequency Components Using the RGA\",\"authors\":\"S. Ito, Y. Mitsukura, H. Miyamura, T. Saito, M. Fukumi\",\"doi\":\"10.1109/SICE.2006.315293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An EEG has frequency components which can describe most of the significant features. These combinations are often unique like individual human beings and yet they have underlying basic features. These frequency components are contained the important and/or not so important components, and then each importance of these frequency components are different. The real-coded genetic algorithm (: RGA) is used for selecting and being weighted the principal characteristic frequency components. We attempt to construct mental change appearance model (: MCAM) of only one measurement point. In order to show the effectiveness of the proposed method, computer simulations are carried out by using real data\",\"PeriodicalId\":309260,\"journal\":{\"name\":\"2006 SICE-ICASE International Joint Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 SICE-ICASE International Joint Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2006.315293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 SICE-ICASE International Joint Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2006.315293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

脑电图具有可以描述大多数重要特征的频率分量。这些组合通常是独一无二的,就像个体人类一样,但它们具有潜在的基本特征。这些频率分量包含了重要和/或不那么重要的分量,然后这些频率分量的每个重要性是不同的。采用实数编码遗传算法(RGA)对主特征频率分量进行选择和加权。我们尝试构建只有一个测量点的心理变化表象模型(MCAM)。为了验证该方法的有效性,利用实际数据进行了计算机仿真
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Proposal of the EEG Characteristics Extraction Method in Weighted Principal Frequency Components Using the RGA
An EEG has frequency components which can describe most of the significant features. These combinations are often unique like individual human beings and yet they have underlying basic features. These frequency components are contained the important and/or not so important components, and then each importance of these frequency components are different. The real-coded genetic algorithm (: RGA) is used for selecting and being weighted the principal characteristic frequency components. We attempt to construct mental change appearance model (: MCAM) of only one measurement point. In order to show the effectiveness of the proposed method, computer simulations are carried out by using real data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信