{"title":"双频1.7 GHz / 2.5 GHz e类功率放大器,采用130纳米CMOS技术","authors":"D. Kalim, A. Fatemi, R. Negra","doi":"10.1109/NEWCAS.2012.6329059","DOIUrl":null,"url":null,"abstract":"The evolution of new mobile communication standards demand highly efficient multiband power amplifiers (PAs) both in mobile equipments and base stations. This paper presents a concept for a compact multiharmonic load transformation network (MHLTN), appropriate for a fully integrated differential dual-band PA design in an RF front-end transmitter. The proposed MHLTN was applied to implement a dual-band class-E PA based on finite DC-feed inductance in a 130 nm CMOS process for GSM1700 and LTE2500 operation. With a dual-band input matching network, simulation results have shown peak power added efficiency (PAE) and peak output power of more than 57% and 27 dBm, respectively, at both bands. The designed PA is also able to cover a wide frequency range. From 1.4 GHz to 2.7 GHz, output power is above 25 dBm and PAE is higher than 50 %.","PeriodicalId":122918,"journal":{"name":"10th IEEE International NEWCAS Conference","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Dual-band 1.7 GHz / 2.5 GHz class-E power amplifier in 130 nm CMOS technology\",\"authors\":\"D. Kalim, A. Fatemi, R. Negra\",\"doi\":\"10.1109/NEWCAS.2012.6329059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The evolution of new mobile communication standards demand highly efficient multiband power amplifiers (PAs) both in mobile equipments and base stations. This paper presents a concept for a compact multiharmonic load transformation network (MHLTN), appropriate for a fully integrated differential dual-band PA design in an RF front-end transmitter. The proposed MHLTN was applied to implement a dual-band class-E PA based on finite DC-feed inductance in a 130 nm CMOS process for GSM1700 and LTE2500 operation. With a dual-band input matching network, simulation results have shown peak power added efficiency (PAE) and peak output power of more than 57% and 27 dBm, respectively, at both bands. The designed PA is also able to cover a wide frequency range. From 1.4 GHz to 2.7 GHz, output power is above 25 dBm and PAE is higher than 50 %.\",\"PeriodicalId\":122918,\"journal\":{\"name\":\"10th IEEE International NEWCAS Conference\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th IEEE International NEWCAS Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS.2012.6329059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th IEEE International NEWCAS Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS.2012.6329059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dual-band 1.7 GHz / 2.5 GHz class-E power amplifier in 130 nm CMOS technology
The evolution of new mobile communication standards demand highly efficient multiband power amplifiers (PAs) both in mobile equipments and base stations. This paper presents a concept for a compact multiharmonic load transformation network (MHLTN), appropriate for a fully integrated differential dual-band PA design in an RF front-end transmitter. The proposed MHLTN was applied to implement a dual-band class-E PA based on finite DC-feed inductance in a 130 nm CMOS process for GSM1700 and LTE2500 operation. With a dual-band input matching network, simulation results have shown peak power added efficiency (PAE) and peak output power of more than 57% and 27 dBm, respectively, at both bands. The designed PA is also able to cover a wide frequency range. From 1.4 GHz to 2.7 GHz, output power is above 25 dBm and PAE is higher than 50 %.