基于神经网络的电静液作动器自适应位置控制方案

I. Seo, J. Shin, H. Kim, Jong Shik Kim
{"title":"基于神经网络的电静液作动器自适应位置控制方案","authors":"I. Seo, J. Shin, H. Kim, Jong Shik Kim","doi":"10.1109/ICMA.2010.5588597","DOIUrl":null,"url":null,"abstract":"This paper deals with the robust position control of electro hydrostatic actuator(EHA). In general, the position control of EHA systems based on the model of itself is difficult because of system uncertainties such as parameter perturbation, friction, and external disturbance. To solve the problems due to these system uncertainties, an adaptive back-stepping control (ABSC) scheme with radial basis function neural networks (RBFNN) is proposed. The adaptive back-stepping controller consists of back-stepping controller and adaptive rule for reconstruction error. Moreover, to estimate the bounded uncertainties of the reconstruction error, the RBFNN with online update law is designed. The effectiveness of the adaptive back-stepping control system with RBFNN was compared with that of the standard back-stepping control system through computer simulation.","PeriodicalId":145608,"journal":{"name":"2010 IEEE International Conference on Mechatronics and Automation","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Adaptive position control scheme with neural networks for electro-hydrostatic actuator systems\",\"authors\":\"I. Seo, J. Shin, H. Kim, Jong Shik Kim\",\"doi\":\"10.1109/ICMA.2010.5588597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the robust position control of electro hydrostatic actuator(EHA). In general, the position control of EHA systems based on the model of itself is difficult because of system uncertainties such as parameter perturbation, friction, and external disturbance. To solve the problems due to these system uncertainties, an adaptive back-stepping control (ABSC) scheme with radial basis function neural networks (RBFNN) is proposed. The adaptive back-stepping controller consists of back-stepping controller and adaptive rule for reconstruction error. Moreover, to estimate the bounded uncertainties of the reconstruction error, the RBFNN with online update law is designed. The effectiveness of the adaptive back-stepping control system with RBFNN was compared with that of the standard back-stepping control system through computer simulation.\",\"PeriodicalId\":145608,\"journal\":{\"name\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2010.5588597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2010.5588597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

研究了电静液作动器的鲁棒位置控制问题。通常情况下,由于系统存在参数摄动、摩擦和外界干扰等不确定性,基于自身模型的EHA系统位置控制是困难的。针对系统不确定性带来的问题,提出了一种基于径向基函数神经网络(RBFNN)的自适应反演控制方案。自适应反演控制器由反演控制器和重构误差自适应规则组成。此外,为了估计重构误差的有界不确定性,设计了具有在线更新律的RBFNN。通过计算机仿真,比较了RBFNN自适应反步控制系统与标准反步控制系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive position control scheme with neural networks for electro-hydrostatic actuator systems
This paper deals with the robust position control of electro hydrostatic actuator(EHA). In general, the position control of EHA systems based on the model of itself is difficult because of system uncertainties such as parameter perturbation, friction, and external disturbance. To solve the problems due to these system uncertainties, an adaptive back-stepping control (ABSC) scheme with radial basis function neural networks (RBFNN) is proposed. The adaptive back-stepping controller consists of back-stepping controller and adaptive rule for reconstruction error. Moreover, to estimate the bounded uncertainties of the reconstruction error, the RBFNN with online update law is designed. The effectiveness of the adaptive back-stepping control system with RBFNN was compared with that of the standard back-stepping control system through computer simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信