{"title":"具有极低数据复杂度的实用模板-代数侧信道攻击","authors":"Yossef Oren, Ofir Weisse, A. Wool","doi":"10.1145/2487726.2487733","DOIUrl":null,"url":null,"abstract":"Template-based Tolerant Algebraic Side Channel Attacks (Template-TASCA) were suggested in [20] as a way of reducing the high data complexity of template attacks by coupling them with algebraic side-channel attacks. In contrast to the maximum-likelihood method used in a standard template attack, the template-algebraic attack method uses a constraint solver to find the optimal state correlated to the measured side-channel leakage. In this work we present the first application of the template-algebraic key recovery attack to a publicly available data set (IAIK WS2). We show how our attack can successfully recover the encryption key even when the attacker has extremely limited access to the device under test -- only 200 traces in the offline phase and as little as a single trace in the online phase.","PeriodicalId":141766,"journal":{"name":"Hardware and Architectural Support for Security and Privacy","volume":"90U 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Practical template-algebraic side channel attacks with extremely low data complexity\",\"authors\":\"Yossef Oren, Ofir Weisse, A. Wool\",\"doi\":\"10.1145/2487726.2487733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template-based Tolerant Algebraic Side Channel Attacks (Template-TASCA) were suggested in [20] as a way of reducing the high data complexity of template attacks by coupling them with algebraic side-channel attacks. In contrast to the maximum-likelihood method used in a standard template attack, the template-algebraic attack method uses a constraint solver to find the optimal state correlated to the measured side-channel leakage. In this work we present the first application of the template-algebraic key recovery attack to a publicly available data set (IAIK WS2). We show how our attack can successfully recover the encryption key even when the attacker has extremely limited access to the device under test -- only 200 traces in the offline phase and as little as a single trace in the online phase.\",\"PeriodicalId\":141766,\"journal\":{\"name\":\"Hardware and Architectural Support for Security and Privacy\",\"volume\":\"90U 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hardware and Architectural Support for Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2487726.2487733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hardware and Architectural Support for Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487726.2487733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical template-algebraic side channel attacks with extremely low data complexity
Template-based Tolerant Algebraic Side Channel Attacks (Template-TASCA) were suggested in [20] as a way of reducing the high data complexity of template attacks by coupling them with algebraic side-channel attacks. In contrast to the maximum-likelihood method used in a standard template attack, the template-algebraic attack method uses a constraint solver to find the optimal state correlated to the measured side-channel leakage. In this work we present the first application of the template-algebraic key recovery attack to a publicly available data set (IAIK WS2). We show how our attack can successfully recover the encryption key even when the attacker has extremely limited access to the device under test -- only 200 traces in the offline phase and as little as a single trace in the online phase.