{"title":"基于模型的线性和非线性控制器的设计以稳定简单的控制教育实验装置","authors":"Z. Ilhan","doi":"10.1115/imece2021-71863","DOIUrl":null,"url":null,"abstract":"\n This work aims to demonstrate the use of a simple experimental setup to study and benchmark different stabilizing control algorithms for introductory to elementary controls education. The experimental setup consists of a ping-pong ball rolling on a pivoted beam. The control task is to stabilize the ball at the center of the beam by systematically changing the angle of rotation of the beam through the servomotor. A control-oriented dynamic model is first obtained based on the standard Lagrangian approach. Two different model-based control design techniques are then outlined using the developed first-principles model. First, a state-space approach based on the linear-quadratic-regulator optimal control design is proposed using the linearized (approximate) model. An integrator is added to the standard LQR design to improve upon the closed-loop tracking performance. Next, a nonlinear robust design technique is outlined using the full (nonlinear) model in Sliding-Mode Control (SMC) strategy. Challenges for each control technique are discussed based on the initial results, and possible improvement areas are addressed.","PeriodicalId":187039,"journal":{"name":"Volume 9: Engineering Education","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Model-Based Linear and Nonlinear Controllers to Stabilize a Simple Experimental Setup for Controls Education\",\"authors\":\"Z. Ilhan\",\"doi\":\"10.1115/imece2021-71863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work aims to demonstrate the use of a simple experimental setup to study and benchmark different stabilizing control algorithms for introductory to elementary controls education. The experimental setup consists of a ping-pong ball rolling on a pivoted beam. The control task is to stabilize the ball at the center of the beam by systematically changing the angle of rotation of the beam through the servomotor. A control-oriented dynamic model is first obtained based on the standard Lagrangian approach. Two different model-based control design techniques are then outlined using the developed first-principles model. First, a state-space approach based on the linear-quadratic-regulator optimal control design is proposed using the linearized (approximate) model. An integrator is added to the standard LQR design to improve upon the closed-loop tracking performance. Next, a nonlinear robust design technique is outlined using the full (nonlinear) model in Sliding-Mode Control (SMC) strategy. Challenges for each control technique are discussed based on the initial results, and possible improvement areas are addressed.\",\"PeriodicalId\":187039,\"journal\":{\"name\":\"Volume 9: Engineering Education\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Engineering Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-71863\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Engineering Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-71863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Model-Based Linear and Nonlinear Controllers to Stabilize a Simple Experimental Setup for Controls Education
This work aims to demonstrate the use of a simple experimental setup to study and benchmark different stabilizing control algorithms for introductory to elementary controls education. The experimental setup consists of a ping-pong ball rolling on a pivoted beam. The control task is to stabilize the ball at the center of the beam by systematically changing the angle of rotation of the beam through the servomotor. A control-oriented dynamic model is first obtained based on the standard Lagrangian approach. Two different model-based control design techniques are then outlined using the developed first-principles model. First, a state-space approach based on the linear-quadratic-regulator optimal control design is proposed using the linearized (approximate) model. An integrator is added to the standard LQR design to improve upon the closed-loop tracking performance. Next, a nonlinear robust design technique is outlined using the full (nonlinear) model in Sliding-Mode Control (SMC) strategy. Challenges for each control technique are discussed based on the initial results, and possible improvement areas are addressed.