基于局部Gabor相位特征的人脸识别

Yanxia Jiang, Bo Ren
{"title":"基于局部Gabor相位特征的人脸识别","authors":"Yanxia Jiang, Bo Ren","doi":"10.1109/CISE.2010.5677191","DOIUrl":null,"url":null,"abstract":"This Paper proposes a new face recognition method based on local Gabor phase characteristics. In our proposed method, according to the good spatial position and orientation of Gabor filter, a Gabor filter with four frequencies and six orientations is firstly applied to filter face images. Based on daugman''s method and the local XOR pattern, local Gabor phase patterns are then extracted to form the characteristic images. Finally, fisher linear discriminant analysis is used to project the characteristic images of each spatial position and orientation into low dimensional space. Nearest classifier is adopted to the projected characteristics to get the recognition result. Two human face databases, namely Feret and AR database are selected for evaluation. Experimental results show that our method consistently outperforms other recognition methods based on PCA, fisher linear discriminant analysis and Gabor magnitude characteristics.","PeriodicalId":232832,"journal":{"name":"2010 International Conference on Computational Intelligence and Software Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Face Recognition Using Local Gabor Phase Characteristics\",\"authors\":\"Yanxia Jiang, Bo Ren\",\"doi\":\"10.1109/CISE.2010.5677191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This Paper proposes a new face recognition method based on local Gabor phase characteristics. In our proposed method, according to the good spatial position and orientation of Gabor filter, a Gabor filter with four frequencies and six orientations is firstly applied to filter face images. Based on daugman''s method and the local XOR pattern, local Gabor phase patterns are then extracted to form the characteristic images. Finally, fisher linear discriminant analysis is used to project the characteristic images of each spatial position and orientation into low dimensional space. Nearest classifier is adopted to the projected characteristics to get the recognition result. Two human face databases, namely Feret and AR database are selected for evaluation. Experimental results show that our method consistently outperforms other recognition methods based on PCA, fisher linear discriminant analysis and Gabor magnitude characteristics.\",\"PeriodicalId\":232832,\"journal\":{\"name\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2010.5677191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2010.5677191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种基于局部Gabor相位特征的人脸识别方法。在该方法中,根据Gabor滤波器良好的空间位置和方向,首先采用四频率六方向的Gabor滤波器对人脸图像进行滤波。基于道格曼方法和局部异或模式,提取局部Gabor相位模式,形成特征图像。最后,利用fisher线性判别分析将各个空间位置和方向的特征图像投影到低维空间中。对投影特征采用最近邻分类器得到识别结果。选择Feret和AR两个人脸数据库进行评价。实验结果表明,该方法优于其他基于PCA、fisher线性判别分析和Gabor幅度特征的识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition Using Local Gabor Phase Characteristics
This Paper proposes a new face recognition method based on local Gabor phase characteristics. In our proposed method, according to the good spatial position and orientation of Gabor filter, a Gabor filter with four frequencies and six orientations is firstly applied to filter face images. Based on daugman''s method and the local XOR pattern, local Gabor phase patterns are then extracted to form the characteristic images. Finally, fisher linear discriminant analysis is used to project the characteristic images of each spatial position and orientation into low dimensional space. Nearest classifier is adopted to the projected characteristics to get the recognition result. Two human face databases, namely Feret and AR database are selected for evaluation. Experimental results show that our method consistently outperforms other recognition methods based on PCA, fisher linear discriminant analysis and Gabor magnitude characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信