基于小波分析的基因表达模式提取

Xin-Ping Xie, Xiucai Ding
{"title":"基于小波分析的基因表达模式提取","authors":"Xin-Ping Xie, Xiucai Ding","doi":"10.1109/ICINFA.2009.5205112","DOIUrl":null,"url":null,"abstract":"By viewing a gene expression profile as a pseudtime signal, we apply wavelet transformation (WT) to analyze gene expression data in a time-frequency manner. As a result, two pattern extraction approaches, continuous wavelet transformation (CWT)-based one and discrete wavelet transformation (DWT)-based one, are proposed to extract hidden expression patterns for cancer classification and are compared. Gene expression data are highly redundant and highly noisy, and hidden gene correlation patterns play more important roles to cancer classification than any single gene or simple combinations of genes. The CWT can more efficiently detect the consistent correlation signature than the DWT due to the availability of more detail information. Testing results on two publicly available gene expression datasets show the effectiveness and efficiency of the CWT-based approach.","PeriodicalId":223425,"journal":{"name":"2009 International Conference on Information and Automation","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Gene expression pattern extraction based on wavelet analysis\",\"authors\":\"Xin-Ping Xie, Xiucai Ding\",\"doi\":\"10.1109/ICINFA.2009.5205112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By viewing a gene expression profile as a pseudtime signal, we apply wavelet transformation (WT) to analyze gene expression data in a time-frequency manner. As a result, two pattern extraction approaches, continuous wavelet transformation (CWT)-based one and discrete wavelet transformation (DWT)-based one, are proposed to extract hidden expression patterns for cancer classification and are compared. Gene expression data are highly redundant and highly noisy, and hidden gene correlation patterns play more important roles to cancer classification than any single gene or simple combinations of genes. The CWT can more efficiently detect the consistent correlation signature than the DWT due to the availability of more detail information. Testing results on two publicly available gene expression datasets show the effectiveness and efficiency of the CWT-based approach.\",\"PeriodicalId\":223425,\"journal\":{\"name\":\"2009 International Conference on Information and Automation\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Information and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICINFA.2009.5205112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Information and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2009.5205112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过将基因表达谱视为伪时间信号,我们应用小波变换(WT)以时频方式分析基因表达数据。因此,提出了基于连续小波变换(CWT)和基于离散小波变换(DWT)的两种模式提取方法来提取癌症分类的隐藏表达模式,并进行了比较。基因表达数据是高度冗余和高噪声的,隐藏的基因相关模式比任何单一基因或简单的基因组合在癌症分类中发挥更重要的作用。由于CWT可以获得更多的细节信息,因此比DWT更有效地检测出一致的相关特征。在两个公开可用的基因表达数据集上的测试结果显示了基于cwt的方法的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gene expression pattern extraction based on wavelet analysis
By viewing a gene expression profile as a pseudtime signal, we apply wavelet transformation (WT) to analyze gene expression data in a time-frequency manner. As a result, two pattern extraction approaches, continuous wavelet transformation (CWT)-based one and discrete wavelet transformation (DWT)-based one, are proposed to extract hidden expression patterns for cancer classification and are compared. Gene expression data are highly redundant and highly noisy, and hidden gene correlation patterns play more important roles to cancer classification than any single gene or simple combinations of genes. The CWT can more efficiently detect the consistent correlation signature than the DWT due to the availability of more detail information. Testing results on two publicly available gene expression datasets show the effectiveness and efficiency of the CWT-based approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信