动态神经网络对DGPS预测校正的比较分析

Sohel Ahmed, Q. Sultana, K. D. Rao
{"title":"动态神经网络对DGPS预测校正的比较分析","authors":"Sohel Ahmed, Q. Sultana, K. D. Rao","doi":"10.1109/ICVES.2014.7063725","DOIUrl":null,"url":null,"abstract":"Differential Global Positioning System (DGPS) is a technique to improve the accuracy of the GPS positioning. In DGPS, error correction signal is transmitted to the surrounding rovers. Any correction loss during transmission may lead to navigation inaccuracy. This problem can be minimized by incorporating Dynamic Neural Networks (DNNs) at the rovers. DNNs can be used to predict the present and future DGPS correction values by utilizing the past correction values. This paper presents the prediction of error correction values using DNNs such as Focused Time Delay Neural Network (FTDNN), Distributed Time Delay Neural Network (DTDNN), Nonlinear Auto Regressive with eXogenous input Neural Network (NARXNN), Nonlinear Auto Regressive Neural Network (NARNN) and Layer Recurrent Neural Network (LRNN). The results show that the Mean Square Error (MSE) in predicted correction values due to third order LRNN is the least (2.5316e- 05 m).","PeriodicalId":248904,"journal":{"name":"2014 IEEE International Conference on Vehicular Electronics and Safety","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Comparative analysis of DGPS predicted corrections using dynamic neural networks\",\"authors\":\"Sohel Ahmed, Q. Sultana, K. D. Rao\",\"doi\":\"10.1109/ICVES.2014.7063725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential Global Positioning System (DGPS) is a technique to improve the accuracy of the GPS positioning. In DGPS, error correction signal is transmitted to the surrounding rovers. Any correction loss during transmission may lead to navigation inaccuracy. This problem can be minimized by incorporating Dynamic Neural Networks (DNNs) at the rovers. DNNs can be used to predict the present and future DGPS correction values by utilizing the past correction values. This paper presents the prediction of error correction values using DNNs such as Focused Time Delay Neural Network (FTDNN), Distributed Time Delay Neural Network (DTDNN), Nonlinear Auto Regressive with eXogenous input Neural Network (NARXNN), Nonlinear Auto Regressive Neural Network (NARNN) and Layer Recurrent Neural Network (LRNN). The results show that the Mean Square Error (MSE) in predicted correction values due to third order LRNN is the least (2.5316e- 05 m).\",\"PeriodicalId\":248904,\"journal\":{\"name\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Vehicular Electronics and Safety\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2014.7063725\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2014.7063725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

差分全球定位系统(DGPS)是一种提高GPS定位精度的技术。在DGPS中,误差校正信号被传输到周围的漫游车。传输过程中的任何修正损失都可能导致导航不准确。这个问题可以通过在漫游车上加入动态神经网络(dnn)来最小化。dnn可以利用过去的DGPS校正值来预测现在和未来的DGPS校正值。本文介绍了聚焦时滞神经网络(FTDNN)、分布式时滞神经网络(DTDNN)、带外源输入的非线性自回归神经网络(NARXNN)、非线性自回归神经网络(NARNN)和层递归神经网络(LRNN)等深度神经网络对误差修正值的预测。结果表明,三阶LRNN对预测校正值的均方误差(MSE)最小(2.5316e- 05 m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative analysis of DGPS predicted corrections using dynamic neural networks
Differential Global Positioning System (DGPS) is a technique to improve the accuracy of the GPS positioning. In DGPS, error correction signal is transmitted to the surrounding rovers. Any correction loss during transmission may lead to navigation inaccuracy. This problem can be minimized by incorporating Dynamic Neural Networks (DNNs) at the rovers. DNNs can be used to predict the present and future DGPS correction values by utilizing the past correction values. This paper presents the prediction of error correction values using DNNs such as Focused Time Delay Neural Network (FTDNN), Distributed Time Delay Neural Network (DTDNN), Nonlinear Auto Regressive with eXogenous input Neural Network (NARXNN), Nonlinear Auto Regressive Neural Network (NARNN) and Layer Recurrent Neural Network (LRNN). The results show that the Mean Square Error (MSE) in predicted correction values due to third order LRNN is the least (2.5316e- 05 m).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信