一类神经质量模型的参数和状态估计

R. Postoyan, Michelle S. Chong, D. Nešić, L. Kuhlmann
{"title":"一类神经质量模型的参数和状态估计","authors":"R. Postoyan, Michelle S. Chong, D. Nešić, L. Kuhlmann","doi":"10.1109/CDC.2012.6427031","DOIUrl":null,"url":null,"abstract":"We present an adaptive observer which asymptotically reconstructs the parameters and states of a model of interconnected cortical columns. Our study is motivated by the fact that the considered model is able to realistically reproduce patterns seen on (intracranial) electroencephalograms (EEG) by varying its parameters. Therefore, by estimating its parameters and states, we could gain a better understanding of the mechanisms underlying neurological phenomena such as seizures, which might lead to the prediction of the onsets of epileptic seizures. Simulations are performed to illustrate our results.","PeriodicalId":312426,"journal":{"name":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parameter and state estimation for a class of neural mass models\",\"authors\":\"R. Postoyan, Michelle S. Chong, D. Nešić, L. Kuhlmann\",\"doi\":\"10.1109/CDC.2012.6427031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an adaptive observer which asymptotically reconstructs the parameters and states of a model of interconnected cortical columns. Our study is motivated by the fact that the considered model is able to realistically reproduce patterns seen on (intracranial) electroencephalograms (EEG) by varying its parameters. Therefore, by estimating its parameters and states, we could gain a better understanding of the mechanisms underlying neurological phenomena such as seizures, which might lead to the prediction of the onsets of epileptic seizures. Simulations are performed to illustrate our results.\",\"PeriodicalId\":312426,\"journal\":{\"name\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2012.6427031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 51st IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2012.6427031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

我们提出了一种自适应观测器,它可以渐近地重建相互连接的皮质柱模型的参数和状态。我们研究的动机是考虑的模型能够通过改变其参数真实地再现(颅内)脑电图(EEG)上看到的模式。因此,通过估计其参数和状态,我们可以更好地了解癫痫发作等神经现象的机制,从而可以预测癫痫发作的发作。通过仿真来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameter and state estimation for a class of neural mass models
We present an adaptive observer which asymptotically reconstructs the parameters and states of a model of interconnected cortical columns. Our study is motivated by the fact that the considered model is able to realistically reproduce patterns seen on (intracranial) electroencephalograms (EEG) by varying its parameters. Therefore, by estimating its parameters and states, we could gain a better understanding of the mechanisms underlying neurological phenomena such as seizures, which might lead to the prediction of the onsets of epileptic seizures. Simulations are performed to illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信