基于深度学习的跑步步态分析无线智能鞋

N. D. Thuan, Hoang Si Hong
{"title":"基于深度学习的跑步步态分析无线智能鞋","authors":"N. D. Thuan, Hoang Si Hong","doi":"10.1109/ICCAIS56082.2022.9990398","DOIUrl":null,"url":null,"abstract":"In this work, we propose a design of wireless smart shoes for running gait analysis. The system is based on an inertial measurement unit (IMU) and Bluetooth low energy (BLE) protocol to save energy. The estimated parameters include activity type (run/walk/rest), forward distance, and average moving speed. These parameters are calculated and displayed on the user’s smartphone. Different from previous works, IMU data is collected to train a compact neural network model for running gait classification. The performance of model prediction and other measurements is evaluated with a customized database of 600 data segments. Experimental results show that our model achieves a high accuracy of 99.35% on gait classification. Other measures for moving analysis such as the total forward distance and the average speed are retrieved with a low maximum error of less than 4.67% and 4.80% respectively.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning\",\"authors\":\"N. D. Thuan, Hoang Si Hong\",\"doi\":\"10.1109/ICCAIS56082.2022.9990398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a design of wireless smart shoes for running gait analysis. The system is based on an inertial measurement unit (IMU) and Bluetooth low energy (BLE) protocol to save energy. The estimated parameters include activity type (run/walk/rest), forward distance, and average moving speed. These parameters are calculated and displayed on the user’s smartphone. Different from previous works, IMU data is collected to train a compact neural network model for running gait classification. The performance of model prediction and other measurements is evaluated with a customized database of 600 data segments. Experimental results show that our model achieves a high accuracy of 99.35% on gait classification. Other measures for moving analysis such as the total forward distance and the average speed are retrieved with a low maximum error of less than 4.67% and 4.80% respectively.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们提出了一种用于跑步步态分析的无线智能鞋设计。该系统基于惯性测量单元(IMU)和蓝牙低功耗(BLE)协议来节省能源。估计的参数包括活动类型(跑步/步行/休息)、前进距离和平均移动速度。这些参数被计算并显示在用户的智能手机上。与以往工作不同的是,本文收集了IMU数据,训练了一个紧凑的神经网络模型,用于跑步步态分类。使用包含600个数据段的定制数据库来评估模型预测和其他测量的性能。实验结果表明,该模型的步态分类准确率高达99.35%。其他移动分析指标,如总前进距离和平均速度,检索的最大误差分别小于4.67%和4.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless Smart Shoes for Running Gait Analysis Based on Deep Learning
In this work, we propose a design of wireless smart shoes for running gait analysis. The system is based on an inertial measurement unit (IMU) and Bluetooth low energy (BLE) protocol to save energy. The estimated parameters include activity type (run/walk/rest), forward distance, and average moving speed. These parameters are calculated and displayed on the user’s smartphone. Different from previous works, IMU data is collected to train a compact neural network model for running gait classification. The performance of model prediction and other measurements is evaluated with a customized database of 600 data segments. Experimental results show that our model achieves a high accuracy of 99.35% on gait classification. Other measures for moving analysis such as the total forward distance and the average speed are retrieved with a low maximum error of less than 4.67% and 4.80% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信