协同过滤的混合超参数优化

Peter Szabó, B. Genge
{"title":"协同过滤的混合超参数优化","authors":"Peter Szabó, B. Genge","doi":"10.1109/SYNASC51798.2020.00042","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) became a prevalent technique to filter objects a user might like, based on other users' reactions. The neural network based solutions for CF rely on hyper-parameters to control the learning process. This paper documents a solution for hyper-parameter optimization (HPO). We empirically prove that optimizing the hyperparameters leads to a significant performance gain. Moreover, we show a method to streamline HPO while substantially reducing computation time. Our solution relies on the separation of hyper-parameters into two groups, predetermined and automatically optimizable parameters. By minimizing the later, we can significantly reduce the overall time needed for HPO. After an extensive experimental analysis, the method produced significantly better results than manual HPO in the context of a real-world dataset.","PeriodicalId":278104,"journal":{"name":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hybrid Hyper-parameter Optimization for Collaborative Filtering\",\"authors\":\"Peter Szabó, B. Genge\",\"doi\":\"10.1109/SYNASC51798.2020.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collaborative filtering (CF) became a prevalent technique to filter objects a user might like, based on other users' reactions. The neural network based solutions for CF rely on hyper-parameters to control the learning process. This paper documents a solution for hyper-parameter optimization (HPO). We empirically prove that optimizing the hyperparameters leads to a significant performance gain. Moreover, we show a method to streamline HPO while substantially reducing computation time. Our solution relies on the separation of hyper-parameters into two groups, predetermined and automatically optimizable parameters. By minimizing the later, we can significantly reduce the overall time needed for HPO. After an extensive experimental analysis, the method produced significantly better results than manual HPO in the context of a real-world dataset.\",\"PeriodicalId\":278104,\"journal\":{\"name\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC51798.2020.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 22nd International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC51798.2020.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

协同过滤(CF)成为一种流行的技术,它根据其他用户的反应来过滤用户可能喜欢的对象。基于神经网络的CF解决方案依靠超参数来控制学习过程。本文提出了一种超参数优化(HPO)的求解方法。我们的经验证明,优化超参数导致显著的性能增益。此外,我们还展示了一种简化HPO的方法,同时大大减少了计算时间。我们的解决方案依赖于将超参数分为两组,预先确定的和自动优化的参数。通过最小化后者,我们可以显著减少HPO所需的总时间。经过广泛的实验分析,该方法在真实数据集的背景下产生的结果明显优于手动HPO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid Hyper-parameter Optimization for Collaborative Filtering
Collaborative filtering (CF) became a prevalent technique to filter objects a user might like, based on other users' reactions. The neural network based solutions for CF rely on hyper-parameters to control the learning process. This paper documents a solution for hyper-parameter optimization (HPO). We empirically prove that optimizing the hyperparameters leads to a significant performance gain. Moreover, we show a method to streamline HPO while substantially reducing computation time. Our solution relies on the separation of hyper-parameters into two groups, predetermined and automatically optimizable parameters. By minimizing the later, we can significantly reduce the overall time needed for HPO. After an extensive experimental analysis, the method produced significantly better results than manual HPO in the context of a real-world dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信