一种基于时间逻辑的测试生成和硬件验证的通用方法

T. Kropf, H. Wunderlich
{"title":"一种基于时间逻辑的测试生成和硬件验证的通用方法","authors":"T. Kropf, H. Wunderlich","doi":"10.1109/TEST.1991.519494","DOIUrl":null,"url":null,"abstract":"Hardware verifrcation and sequential test generation are aspects of the same problem, namely to prove the equal behavior determined by two circuit descriptions. During test generation, this attempt succeeds for the faulty and fault free circuit if redundancy exists, and during verifrcation it succeeds, if the implementation is correct with regard to its specification. This observation can be used to cross-fertilize both areas, which have been treated separately up to now. In this work, a common formal pamework for hardware verification and sequential test pattern generation is presented, which is based on modeling the circuit behavior with temporal logic. In addition, a new approach to cope with non resetable flipfiops in sequential test generation is proposed, which is not restricted to stuck-at faults. Based on this verification view, it is possible to provide the designer with one tool for checking circuit correctness and generating test patterns. Its first implementation and application is also described.","PeriodicalId":272630,"journal":{"name":"1991, Proceedings. International Test Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"A common approach to test generation and hardware verification based on temporal logic\",\"authors\":\"T. Kropf, H. Wunderlich\",\"doi\":\"10.1109/TEST.1991.519494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hardware verifrcation and sequential test generation are aspects of the same problem, namely to prove the equal behavior determined by two circuit descriptions. During test generation, this attempt succeeds for the faulty and fault free circuit if redundancy exists, and during verifrcation it succeeds, if the implementation is correct with regard to its specification. This observation can be used to cross-fertilize both areas, which have been treated separately up to now. In this work, a common formal pamework for hardware verification and sequential test pattern generation is presented, which is based on modeling the circuit behavior with temporal logic. In addition, a new approach to cope with non resetable flipfiops in sequential test generation is proposed, which is not restricted to stuck-at faults. Based on this verification view, it is possible to provide the designer with one tool for checking circuit correctness and generating test patterns. Its first implementation and application is also described.\",\"PeriodicalId\":272630,\"journal\":{\"name\":\"1991, Proceedings. International Test Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1991, Proceedings. International Test Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.1991.519494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1991, Proceedings. International Test Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.1991.519494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

硬件验证和顺序测试生成是同一问题的两个方面,即证明由两个电路描述确定的相等行为。在测试生成过程中,如果存在冗余,则对故障和无故障电路的此尝试成功;在验证过程中,如果实现符合其规范,则此尝试成功。这一观察结果可用于对两个地区进行杂交施肥,到目前为止,这两个地区一直是分开处理的。本文提出了一种基于时序逻辑对电路行为建模的硬件验证和时序测试模式生成的通用形式化框架。此外,提出了一种不局限于卡滞故障的序列测试生成中不可复位触发器的处理方法。基于这种验证视图,可以为设计人员提供一种工具来检查电路正确性和生成测试模式。本文还介绍了其首次实现和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A common approach to test generation and hardware verification based on temporal logic
Hardware verifrcation and sequential test generation are aspects of the same problem, namely to prove the equal behavior determined by two circuit descriptions. During test generation, this attempt succeeds for the faulty and fault free circuit if redundancy exists, and during verifrcation it succeeds, if the implementation is correct with regard to its specification. This observation can be used to cross-fertilize both areas, which have been treated separately up to now. In this work, a common formal pamework for hardware verification and sequential test pattern generation is presented, which is based on modeling the circuit behavior with temporal logic. In addition, a new approach to cope with non resetable flipfiops in sequential test generation is proposed, which is not restricted to stuck-at faults. Based on this verification view, it is possible to provide the designer with one tool for checking circuit correctness and generating test patterns. Its first implementation and application is also described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信