云海洋计算:海洋数据处理的新方案

Jun Liu, Kai Guo, Jun-hong Cui
{"title":"云海洋计算:海洋数据处理的新方案","authors":"Jun Liu, Kai Guo, Jun-hong Cui","doi":"10.1145/3291940.3291946","DOIUrl":null,"url":null,"abstract":"we propose a method of Cloud-Ocean Computing to push the intelligent processing of the data to the front end. Ocean Computing and Cloud Computing work together, Ocean Computing is an important support for Cloud Computing. For Ocean Computing, we put forward two ways. The first way is to take a compressed sensing method which extracts valuable information from the original data intelligently. The second way is to fuse multi-sensor data and make intelligent identification and prediction. We did the experiment on the first way, and the experiment is shown to exhibit significantly enhanced performance with respect to reducing energy consumption and shortening transmission time.","PeriodicalId":429405,"journal":{"name":"Proceedings of the 13th International Conference on Underwater Networks & Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cloud-ocean computing: a new scheme of marine data processing\",\"authors\":\"Jun Liu, Kai Guo, Jun-hong Cui\",\"doi\":\"10.1145/3291940.3291946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"we propose a method of Cloud-Ocean Computing to push the intelligent processing of the data to the front end. Ocean Computing and Cloud Computing work together, Ocean Computing is an important support for Cloud Computing. For Ocean Computing, we put forward two ways. The first way is to take a compressed sensing method which extracts valuable information from the original data intelligently. The second way is to fuse multi-sensor data and make intelligent identification and prediction. We did the experiment on the first way, and the experiment is shown to exhibit significantly enhanced performance with respect to reducing energy consumption and shortening transmission time.\",\"PeriodicalId\":429405,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Underwater Networks & Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Underwater Networks & Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3291940.3291946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Underwater Networks & Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3291940.3291946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种云海洋计算的方法,将数据的智能处理推向前端。海洋计算与云计算协同工作,海洋计算是云计算的重要支撑。对于海洋计算,我们提出了两种方法。第一种方法是采用压缩感知方法,智能地从原始数据中提取有价值的信息。二是融合多传感器数据,进行智能识别和预测。我们对第一种方式进行了实验,实验结果表明,在降低能耗和缩短传输时间方面,该方法的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cloud-ocean computing: a new scheme of marine data processing
we propose a method of Cloud-Ocean Computing to push the intelligent processing of the data to the front end. Ocean Computing and Cloud Computing work together, Ocean Computing is an important support for Cloud Computing. For Ocean Computing, we put forward two ways. The first way is to take a compressed sensing method which extracts valuable information from the original data intelligently. The second way is to fuse multi-sensor data and make intelligent identification and prediction. We did the experiment on the first way, and the experiment is shown to exhibit significantly enhanced performance with respect to reducing energy consumption and shortening transmission time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信