沥青路面压实控制:密度实验室和无损检测方法的相关性

Andrius Baltrušaitis, A. Vaitkus, J. Židanavičiūtė
{"title":"沥青路面压实控制:密度实验室和无损检测方法的相关性","authors":"Andrius Baltrušaitis, A. Vaitkus, J. Židanavičiūtė","doi":"10.7250/bjrbe.2022-17.555","DOIUrl":null,"url":null,"abstract":"Assurance of asphalt pavement layer compaction, expressed by air voids ratio between field and laboratory bulk density, is one of the main criteria of the asphalt pavement durability. Thus, destructive measures should be applied, and many asphalt samples should be taken on site in order to determine the representative compaction level of constructed pavement. With the fast development of technologies, new methods should be considered for fast, non-destructive and accurate determination of asphalt bulk density on site. As there are quite few non-destructive methods related to asphalt pavement density measurement, there is a need to make comparison of such methods. Currently, when GPR methods are used to determine the density, calibration cores are used in all cases to estimate the unknown or unmeasured variables or conditions that may affect the results of dielectric value measurements. The aim of this study is to develop a regression model that can predict the bulk density of the compacted asphalt layer without coring, using the design values of the bulk density determined in the type tests of asphalt mixtures or other currently used non-destructive testing technologies (in this case PQI and NDG) and GPR measured dielectric constant values.","PeriodicalId":297140,"journal":{"name":"The Baltic Journal of Road and Bridge Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asphalt Pavement Compaction Control: Relevance of Laboratory and Non-Destructive Testing Methods of Density\",\"authors\":\"Andrius Baltrušaitis, A. Vaitkus, J. Židanavičiūtė\",\"doi\":\"10.7250/bjrbe.2022-17.555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assurance of asphalt pavement layer compaction, expressed by air voids ratio between field and laboratory bulk density, is one of the main criteria of the asphalt pavement durability. Thus, destructive measures should be applied, and many asphalt samples should be taken on site in order to determine the representative compaction level of constructed pavement. With the fast development of technologies, new methods should be considered for fast, non-destructive and accurate determination of asphalt bulk density on site. As there are quite few non-destructive methods related to asphalt pavement density measurement, there is a need to make comparison of such methods. Currently, when GPR methods are used to determine the density, calibration cores are used in all cases to estimate the unknown or unmeasured variables or conditions that may affect the results of dielectric value measurements. The aim of this study is to develop a regression model that can predict the bulk density of the compacted asphalt layer without coring, using the design values of the bulk density determined in the type tests of asphalt mixtures or other currently used non-destructive testing technologies (in this case PQI and NDG) and GPR measured dielectric constant values.\",\"PeriodicalId\":297140,\"journal\":{\"name\":\"The Baltic Journal of Road and Bridge Engineering\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7250/bjrbe.2022-17.555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7250/bjrbe.2022-17.555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

沥青路面层压实度的保证是衡量沥青路面耐久性的主要标准之一,以现场容重与实验室容重的空隙比来表示。因此,应采取破坏措施,并在现场采集大量沥青样品,以确定施工路面的代表性压实水平。随着技术的快速发展,沥青容重的现场快速、无损、准确测定需要考虑新的方法。由于沥青路面密度的无损测量方法很少,因此有必要对这些方法进行比较。目前,当使用探地雷达方法确定密度时,在所有情况下都使用校准芯来估计可能影响介电值测量结果的未知或未测量变量或条件。本研究的目的是开发一个回归模型,利用沥青混合料型式试验或其他目前使用的无损检测技术(在本研究中为PQI和NDG)和探地雷达测量的介电常数值确定的容重设计值,预测未取心的压实沥青层的容重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asphalt Pavement Compaction Control: Relevance of Laboratory and Non-Destructive Testing Methods of Density
Assurance of asphalt pavement layer compaction, expressed by air voids ratio between field and laboratory bulk density, is one of the main criteria of the asphalt pavement durability. Thus, destructive measures should be applied, and many asphalt samples should be taken on site in order to determine the representative compaction level of constructed pavement. With the fast development of technologies, new methods should be considered for fast, non-destructive and accurate determination of asphalt bulk density on site. As there are quite few non-destructive methods related to asphalt pavement density measurement, there is a need to make comparison of such methods. Currently, when GPR methods are used to determine the density, calibration cores are used in all cases to estimate the unknown or unmeasured variables or conditions that may affect the results of dielectric value measurements. The aim of this study is to develop a regression model that can predict the bulk density of the compacted asphalt layer without coring, using the design values of the bulk density determined in the type tests of asphalt mixtures or other currently used non-destructive testing technologies (in this case PQI and NDG) and GPR measured dielectric constant values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信