光伏抽水系统的神经网络增量电导MPPT算法

Bouchra Sefriti, I. Boumhidi
{"title":"光伏抽水系统的神经网络增量电导MPPT算法","authors":"Bouchra Sefriti, I. Boumhidi","doi":"10.1109/SITA.2015.7358383","DOIUrl":null,"url":null,"abstract":"In this paper, an intelligent Incremental conductance based neural network (ICNN) algorithm is proposed for the maximum power point tracking control of a photovoltaic water pumping system. The objective of this work is to improve the accuracy of the standard IC command in term of rapidity. The proposed strategy combines the neural network (NN) off line learning technique with the standard IC. The NN is used for initializing the system near the optimal maximum point and the IC is used for fast reaching to the MPPT. By comparison with the standard IC algorithm under rapidly changing Atmospheric conditions, the simulation results show the best performance for the proposed ICNN algorithm in term of convergence rapidity.","PeriodicalId":174405,"journal":{"name":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Neural network Incremental conductance MPPT algorithm for photovoltaic water pumping system\",\"authors\":\"Bouchra Sefriti, I. Boumhidi\",\"doi\":\"10.1109/SITA.2015.7358383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an intelligent Incremental conductance based neural network (ICNN) algorithm is proposed for the maximum power point tracking control of a photovoltaic water pumping system. The objective of this work is to improve the accuracy of the standard IC command in term of rapidity. The proposed strategy combines the neural network (NN) off line learning technique with the standard IC. The NN is used for initializing the system near the optimal maximum point and the IC is used for fast reaching to the MPPT. By comparison with the standard IC algorithm under rapidly changing Atmospheric conditions, the simulation results show the best performance for the proposed ICNN algorithm in term of convergence rapidity.\",\"PeriodicalId\":174405,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2015.7358383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2015.7358383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种基于智能增量电导的神经网络(ICNN)算法,用于光伏水泵系统的最大功率点跟踪控制。这项工作的目的是提高标准IC指令的准确性和快速性。该策略将神经网络(NN)离线学习技术与标准集成电路(IC)相结合,NN用于在最优最大值附近初始化系统,IC用于快速达到最优点。通过与标准集成电路算法在快速变化的大气条件下的比较,仿真结果表明该算法在收敛速度方面具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network Incremental conductance MPPT algorithm for photovoltaic water pumping system
In this paper, an intelligent Incremental conductance based neural network (ICNN) algorithm is proposed for the maximum power point tracking control of a photovoltaic water pumping system. The objective of this work is to improve the accuracy of the standard IC command in term of rapidity. The proposed strategy combines the neural network (NN) off line learning technique with the standard IC. The NN is used for initializing the system near the optimal maximum point and the IC is used for fast reaching to the MPPT. By comparison with the standard IC algorithm under rapidly changing Atmospheric conditions, the simulation results show the best performance for the proposed ICNN algorithm in term of convergence rapidity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信