布尔函数的复合闭类

Tamás Waldhauser
{"title":"布尔函数的复合闭类","authors":"Tamás Waldhauser","doi":"10.1109/ISMVL.2011.35","DOIUrl":null,"url":null,"abstract":"We determine all composition-closed equational classes of Boolean functions. These classes provide a natural generalization of clones and iterative algebras: they are closed under composition, permutation and identification (diagonalization) of variables and under introduction of inessential variables (cylindrification), but they do not necessarily contain projections. Thus the lattice formed by these classes is an extension of the Post lattice. The cardinality of this lattice is continuum, yet it is possible to describe its structure to some extent.","PeriodicalId":234611,"journal":{"name":"2011 41st IEEE International Symposium on Multiple-Valued Logic","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Composition-Closed Classes of Boolean Functions\",\"authors\":\"Tamás Waldhauser\",\"doi\":\"10.1109/ISMVL.2011.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine all composition-closed equational classes of Boolean functions. These classes provide a natural generalization of clones and iterative algebras: they are closed under composition, permutation and identification (diagonalization) of variables and under introduction of inessential variables (cylindrification), but they do not necessarily contain projections. Thus the lattice formed by these classes is an extension of the Post lattice. The cardinality of this lattice is continuum, yet it is possible to describe its structure to some extent.\",\"PeriodicalId\":234611,\"journal\":{\"name\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 41st IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2011.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 41st IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2011.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们确定了布尔函数的所有复合闭等式类。这些类提供了克隆和迭代代数的自然推广:它们在变量的组合、置换和识别(对角化)和非本质变量的引入(柱化)下是封闭的,但它们不一定包含投影。因此,由这些类形成的晶格是Post晶格的扩展。该点阵的基数是连续的,但在一定程度上可以描述其结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Composition-Closed Classes of Boolean Functions
We determine all composition-closed equational classes of Boolean functions. These classes provide a natural generalization of clones and iterative algebras: they are closed under composition, permutation and identification (diagonalization) of variables and under introduction of inessential variables (cylindrification), but they do not necessarily contain projections. Thus the lattice formed by these classes is an extension of the Post lattice. The cardinality of this lattice is continuum, yet it is possible to describe its structure to some extent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信