基于迭代学习方法的PID参数优化整定

Jian-xin Xu, Deqing Huang
{"title":"基于迭代学习方法的PID参数优化整定","authors":"Jian-xin Xu, Deqing Huang","doi":"10.1109/ISIC.2007.4450889","DOIUrl":null,"url":null,"abstract":"PID is the most predominant industrial controller that constitutes more than 90% feedback loops. Time domain performance of PID, including overshoot, settling time and rise time, is directly relevant to the tuning of PID parameters. In this work we propose an optimal tuning method for PID by means of iterative learning. PID parameters will be updated whenever the same control task is repeated. A novel property of the new tuning method is that the time domain performance can be incorporated directly into the objective function to be minimized. Another novel property is that the optimal tuning does not require as much the process model knowledge as other PID tuning methods. The new tuning method is essentially applicable to any processes that are stabilizable by the PID controller.","PeriodicalId":184867,"journal":{"name":"2007 IEEE 22nd International Symposium on Intelligent Control","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Optimal Tuning of PID Parameters Using Iterative Learning Approach\",\"authors\":\"Jian-xin Xu, Deqing Huang\",\"doi\":\"10.1109/ISIC.2007.4450889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PID is the most predominant industrial controller that constitutes more than 90% feedback loops. Time domain performance of PID, including overshoot, settling time and rise time, is directly relevant to the tuning of PID parameters. In this work we propose an optimal tuning method for PID by means of iterative learning. PID parameters will be updated whenever the same control task is repeated. A novel property of the new tuning method is that the time domain performance can be incorporated directly into the objective function to be minimized. Another novel property is that the optimal tuning does not require as much the process model knowledge as other PID tuning methods. The new tuning method is essentially applicable to any processes that are stabilizable by the PID controller.\",\"PeriodicalId\":184867,\"journal\":{\"name\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 22nd International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2007.4450889\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 22nd International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2007.4450889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

PID是最主要的工业控制器,它构成了90%以上的反馈回路。PID的时域性能,包括超调量、稳定时间和上升时间,直接关系到PID参数的整定。本文提出了一种基于迭代学习的PID最优整定方法。每当重复相同的控制任务时,PID参数将被更新。该方法的一个新颖之处在于可以将时域性能直接反映到目标函数中。另一个新颖的特性是,最优整定不需要像其他PID整定方法那样多的过程模型知识。这种新的整定方法基本上适用于任何可由PID控制器稳定的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Tuning of PID Parameters Using Iterative Learning Approach
PID is the most predominant industrial controller that constitutes more than 90% feedback loops. Time domain performance of PID, including overshoot, settling time and rise time, is directly relevant to the tuning of PID parameters. In this work we propose an optimal tuning method for PID by means of iterative learning. PID parameters will be updated whenever the same control task is repeated. A novel property of the new tuning method is that the time domain performance can be incorporated directly into the objective function to be minimized. Another novel property is that the optimal tuning does not require as much the process model knowledge as other PID tuning methods. The new tuning method is essentially applicable to any processes that are stabilizable by the PID controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信