具有柔性踝关节的两足机器人的运动

K. Yi
{"title":"具有柔性踝关节的两足机器人的运动","authors":"K. Yi","doi":"10.1109/ROBOT.1997.620038","DOIUrl":null,"url":null,"abstract":"Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.","PeriodicalId":225473,"journal":{"name":"Proceedings of International Conference on Robotics and Automation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Locomotion of a biped robot with compliant ankle joints\",\"authors\":\"K. Yi\",\"doi\":\"10.1109/ROBOT.1997.620038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.\",\"PeriodicalId\":225473,\"journal\":{\"name\":\"Proceedings of International Conference on Robotics and Automation\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.1997.620038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.1997.620038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

研究了具有柔性踝关节的双足机器人的控制问题。模拟版的人类踝关节使用弹簧和机械约束,这给了关节的灵活性和顺应接触地面。本文提出的具有柔性踝关节的两足机器人,使其鞋底与地面有良好的接触,使足部落地柔软。因此,安装用于测量双足动物重心的力传感器变得更加容易。不需要驱动踝关节的马达,这使得腿很轻。然而,控制问题变得更加困难,因为踝关节无法从柔性踝关节提供使双足动物达到所需步态的踝关节扭矩。为了解决这一问题,我们提出了一种通过调整髋关节位置来动态改变步态的方法。通过对俄亥俄州立大学SD-2双足机器人的数学模型进行仿真,验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Locomotion of a biped robot with compliant ankle joints
Control of a biped robot which has compliant ankle joints is dealt in this paper. Simulated version of a human ankle joint is built using springs and mechanical constraints, which gives a flexibility of joint and compliance against the touching ground. The biped robot with compliant ankle joints proposed here gives a good contact between its sole and the ground and makes foot landing soft. As a result, installing force sensors for measuring the center of gravity of the biped becomes easier. A motor to drive an ankle joint is not needed which makes legs light. However, the control problem becomes more difficult because the torque of the ankle joint to put the biped in a desired walking gait cannot be provided from the compliant ankle joint. To solve this problem, we proposed a dynamic gait modification method by adjusting the position of a hip joint. Simulation results for the mathematical model of the SD-2 biped in the Ohio State University are given to show the validity of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信