频率离散化技术在不确定微分线性重复过程稳定性与控制中的应用

Marcin Boski, W. Paszke, E. Rogers
{"title":"频率离散化技术在不确定微分线性重复过程稳定性与控制中的应用","authors":"Marcin Boski, W. Paszke, E. Rogers","doi":"10.1109/MMAR.2018.8486034","DOIUrl":null,"url":null,"abstract":"The paper investigates the problem of stability analysis of differential linear repetitive processes with norm-bounded uncertainties. By applying a version of the Kalman-Yakubovich-Popov (KYP) Lemma, relaxed conditions for stability along the pass are proposed in terms of linear matrix inequalities (LMIs), which can be easily solved via standard numerical software. In particular, the conservatism of the resulting condition for stability along the pass can be significantly reduced by dividing the entire frequency domain into several sub-intervals and by applying KYP Lemma to each frequency sub-interval. Moreover, the obtained stability result is suitable for extension to robust control law design for processes with norm bounded uncertainty. Finally, a numerical example is provided to illustrate the application of the developed results.","PeriodicalId":201658,"journal":{"name":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Application of a Frequency-Discretization Technique for Stability and Control of Uncertain Differential Linear Repetitive Processes\",\"authors\":\"Marcin Boski, W. Paszke, E. Rogers\",\"doi\":\"10.1109/MMAR.2018.8486034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper investigates the problem of stability analysis of differential linear repetitive processes with norm-bounded uncertainties. By applying a version of the Kalman-Yakubovich-Popov (KYP) Lemma, relaxed conditions for stability along the pass are proposed in terms of linear matrix inequalities (LMIs), which can be easily solved via standard numerical software. In particular, the conservatism of the resulting condition for stability along the pass can be significantly reduced by dividing the entire frequency domain into several sub-intervals and by applying KYP Lemma to each frequency sub-interval. Moreover, the obtained stability result is suitable for extension to robust control law design for processes with norm bounded uncertainty. Finally, a numerical example is provided to illustrate the application of the developed results.\",\"PeriodicalId\":201658,\"journal\":{\"name\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2018.8486034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2018.8486034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

研究具有范数有界不确定性的微分线性重复过程的稳定性分析问题。应用kalman - yakuboich - popov (KYP)引理的一个版本,以线性矩阵不等式(lmi)的形式提出了沿通道稳定的松弛条件,该条件可以很容易地通过标准数值软件求解。特别是,通过将整个频域划分为几个子区间并对每个子区间应用KYP引理,可以显著降低沿通道稳定性条件的保守性。所得到的稳定性结果可推广到范数有界不确定性过程的鲁棒控制律设计中。最后,给出了一个数值算例来说明所得结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of a Frequency-Discretization Technique for Stability and Control of Uncertain Differential Linear Repetitive Processes
The paper investigates the problem of stability analysis of differential linear repetitive processes with norm-bounded uncertainties. By applying a version of the Kalman-Yakubovich-Popov (KYP) Lemma, relaxed conditions for stability along the pass are proposed in terms of linear matrix inequalities (LMIs), which can be easily solved via standard numerical software. In particular, the conservatism of the resulting condition for stability along the pass can be significantly reduced by dividing the entire frequency domain into several sub-intervals and by applying KYP Lemma to each frequency sub-interval. Moreover, the obtained stability result is suitable for extension to robust control law design for processes with norm bounded uncertainty. Finally, a numerical example is provided to illustrate the application of the developed results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信