利用注视数据对漫画进行分割和影响

Ishwarya Thirunarayanan, S. Koppal, J. Shea, Eakta Jain
{"title":"利用注视数据对漫画进行分割和影响","authors":"Ishwarya Thirunarayanan, S. Koppal, J. Shea, Eakta Jain","doi":"10.1145/2931002.2947703","DOIUrl":null,"url":null,"abstract":"In this work, we present a semi-automatic method based on gaze data to identify the objects in comic images on which digital effects will look best. Our key contribution is a robust technique to cluster the noisy gaze data without having to specify the number of clusters as input. We also present an approach to segment the identified object of interest.","PeriodicalId":102213,"journal":{"name":"Proceedings of the ACM Symposium on Applied Perception","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging gaze data for segmentation and effects on comics\",\"authors\":\"Ishwarya Thirunarayanan, S. Koppal, J. Shea, Eakta Jain\",\"doi\":\"10.1145/2931002.2947703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a semi-automatic method based on gaze data to identify the objects in comic images on which digital effects will look best. Our key contribution is a robust technique to cluster the noisy gaze data without having to specify the number of clusters as input. We also present an approach to segment the identified object of interest.\",\"PeriodicalId\":102213,\"journal\":{\"name\":\"Proceedings of the ACM Symposium on Applied Perception\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Symposium on Applied Perception\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2931002.2947703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Symposium on Applied Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2931002.2947703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提出了一种基于注视数据的半自动方法来识别漫画图像中数字效果最好的物体。我们的关键贡献是一种鲁棒的技术,可以在不指定群集数量作为输入的情况下对噪声凝视数据进行聚类。我们还提出了一种分割感兴趣的识别对象的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging gaze data for segmentation and effects on comics
In this work, we present a semi-automatic method based on gaze data to identify the objects in comic images on which digital effects will look best. Our key contribution is a robust technique to cluster the noisy gaze data without having to specify the number of clusters as input. We also present an approach to segment the identified object of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信