基于普拉特价值图的视频分割

M. Hagara, Adam Hlavatovic
{"title":"基于普拉特价值图的视频分割","authors":"M. Hagara, Adam Hlavatovic","doi":"10.1109/RADIOELEK.2009.5158758","DOIUrl":null,"url":null,"abstract":"In our paper we present new method for detection of slow motion video segments. First we detect edges in two subsequent images from video stream. To compare these edge images we compute Pratt's figure of merit. Pratt's figure of merit is normally used as performance measure for edge detection method. We use this parameter in different way as motion intensity indicator, high values of figure of merit point to video segments with either no motion or slow motion in scene.","PeriodicalId":285174,"journal":{"name":"2009 19th International Conference Radioelektronika","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Video segmentation based on Pratt's figure of merit\",\"authors\":\"M. Hagara, Adam Hlavatovic\",\"doi\":\"10.1109/RADIOELEK.2009.5158758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our paper we present new method for detection of slow motion video segments. First we detect edges in two subsequent images from video stream. To compare these edge images we compute Pratt's figure of merit. Pratt's figure of merit is normally used as performance measure for edge detection method. We use this parameter in different way as motion intensity indicator, high values of figure of merit point to video segments with either no motion or slow motion in scene.\",\"PeriodicalId\":285174,\"journal\":{\"name\":\"2009 19th International Conference Radioelektronika\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 19th International Conference Radioelektronika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2009.5158758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 19th International Conference Radioelektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2009.5158758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种新的慢动作视频片段检测方法。首先,我们在视频流的两个后续图像中检测边缘。为了比较这些边缘图像,我们计算了普拉特的价值值。在边缘检测方法中,通常采用普惠值作为性能度量。我们以不同的方式使用这个参数作为运动强度指标,高数值的价值指向视频片段在场景中没有运动或缓慢运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video segmentation based on Pratt's figure of merit
In our paper we present new method for detection of slow motion video segments. First we detect edges in two subsequent images from video stream. To compare these edge images we compute Pratt's figure of merit. Pratt's figure of merit is normally used as performance measure for edge detection method. We use this parameter in different way as motion intensity indicator, high values of figure of merit point to video segments with either no motion or slow motion in scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信