裂缝梯度预测中的不确定性处理

K. Su, A. Onaisi
{"title":"裂缝梯度预测中的不确定性处理","authors":"K. Su, A. Onaisi","doi":"10.3997/2214-4609.201900503","DOIUrl":null,"url":null,"abstract":"Summary In Geomechanics for drilling engineering, there are two possible methods for predicting the FG: i) method based on the calculation of stress around the wellbore, ii) method using depth correlation established for a specific field from a set of leak-off pressure (LOP) data recorded on offset wells. In Total E&P, the method of calculating stress around the wellbore in order to predict the FG has been used and developed for a decade. It primarily consists of building and calibrating a ID MEM, using proprietary ID poro-mechanical earth model named PoroMEM. The calculation of the FG from the in situ stress model uses two conceptual models of fracturing: shear fracture and tensile fracture. From there, we define two limits for FG: one called FIPmax and the other FIPmin. Such conceptual models help to deal with the uncertainties of rock mechanical behavior because of vertical variability of lithology, help the preparation LOT/FIT during drilling operation, and also aid the interpretation of LOT/FIT. The in situ stress model from PoroMEM also provides the FCP gradient which is useful for well control and is sometimes as the FG. In this paper, we present the conceptual models and an example of FG prediction.","PeriodicalId":295902,"journal":{"name":"Second EAGE Workshop on Pore Pressure Prediction","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dealing with the Uncertainty in the Prediction of Fracture Gradient\",\"authors\":\"K. Su, A. Onaisi\",\"doi\":\"10.3997/2214-4609.201900503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In Geomechanics for drilling engineering, there are two possible methods for predicting the FG: i) method based on the calculation of stress around the wellbore, ii) method using depth correlation established for a specific field from a set of leak-off pressure (LOP) data recorded on offset wells. In Total E&P, the method of calculating stress around the wellbore in order to predict the FG has been used and developed for a decade. It primarily consists of building and calibrating a ID MEM, using proprietary ID poro-mechanical earth model named PoroMEM. The calculation of the FG from the in situ stress model uses two conceptual models of fracturing: shear fracture and tensile fracture. From there, we define two limits for FG: one called FIPmax and the other FIPmin. Such conceptual models help to deal with the uncertainties of rock mechanical behavior because of vertical variability of lithology, help the preparation LOT/FIT during drilling operation, and also aid the interpretation of LOT/FIT. The in situ stress model from PoroMEM also provides the FCP gradient which is useful for well control and is sometimes as the FG. In this paper, we present the conceptual models and an example of FG prediction.\",\"PeriodicalId\":295902,\"journal\":{\"name\":\"Second EAGE Workshop on Pore Pressure Prediction\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second EAGE Workshop on Pore Pressure Prediction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201900503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second EAGE Workshop on Pore Pressure Prediction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201900503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在钻井工程的地质力学中,有两种预测FG的方法:1)基于井筒周围应力计算的方法;2)根据邻井记录的一组泄漏压力(LOP)数据,根据特定油田建立的深度相关性方法。在Total E&P中,计算井筒周围应力以预测FG的方法已经使用和发展了10年。它主要包括建立和校准ID MEM,使用专有的ID孔隙力学地球模型PoroMEM。从地应力模型出发,采用剪切裂缝和张拉裂缝两种压裂概念模型来计算地层应力极限。从这里,我们为FG定义了两个限制:一个称为FIPmax,另一个称为FIPmin。这些概念模型有助于处理岩性垂直变化导致的岩石力学行为的不确定性,有助于钻井作业中LOT/FIT的准备,也有助于LOT/FIT的解释。PoroMEM的原位应力模型还提供了FCP梯度,这对井控很有用,有时也用作FG。在本文中,我们提出了FG预测的概念模型和一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dealing with the Uncertainty in the Prediction of Fracture Gradient
Summary In Geomechanics for drilling engineering, there are two possible methods for predicting the FG: i) method based on the calculation of stress around the wellbore, ii) method using depth correlation established for a specific field from a set of leak-off pressure (LOP) data recorded on offset wells. In Total E&P, the method of calculating stress around the wellbore in order to predict the FG has been used and developed for a decade. It primarily consists of building and calibrating a ID MEM, using proprietary ID poro-mechanical earth model named PoroMEM. The calculation of the FG from the in situ stress model uses two conceptual models of fracturing: shear fracture and tensile fracture. From there, we define two limits for FG: one called FIPmax and the other FIPmin. Such conceptual models help to deal with the uncertainties of rock mechanical behavior because of vertical variability of lithology, help the preparation LOT/FIT during drilling operation, and also aid the interpretation of LOT/FIT. The in situ stress model from PoroMEM also provides the FCP gradient which is useful for well control and is sometimes as the FG. In this paper, we present the conceptual models and an example of FG prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信