基于全局物理先验的VR/AR流体重建

Qifan Zhang, Shibang Xiao, Yunchi Cen, Jingxuan Han, Xiaohui Liang
{"title":"基于全局物理先验的VR/AR流体重建","authors":"Qifan Zhang, Shibang Xiao, Yunchi Cen, Jingxuan Han, Xiaohui Liang","doi":"10.1109/VRW58643.2023.00254","DOIUrl":null,"url":null,"abstract":"Fluid is a common natural phenomenon and often appears in various VR/AR applications. Several works use sparse view images and integrate physical priors to improve reconstruction results. However, existing works only consider physical priors between adjacent frames. In our work, we propose a differentiable fluid simulator combined with a differentiable renderer for fluid reconstruction, which can make full use of global physical priors among long series. Furthermore, we introduce divergence-free Laplacian eigenfunctions as velocity bases to improve efficiency and save memory. We demonstrate our method on both synthetic and real data and show that it can produce better results.","PeriodicalId":412598,"journal":{"name":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Physical Prior Based Fluid Reconstruction for VR/AR\",\"authors\":\"Qifan Zhang, Shibang Xiao, Yunchi Cen, Jingxuan Han, Xiaohui Liang\",\"doi\":\"10.1109/VRW58643.2023.00254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluid is a common natural phenomenon and often appears in various VR/AR applications. Several works use sparse view images and integrate physical priors to improve reconstruction results. However, existing works only consider physical priors between adjacent frames. In our work, we propose a differentiable fluid simulator combined with a differentiable renderer for fluid reconstruction, which can make full use of global physical priors among long series. Furthermore, we introduce divergence-free Laplacian eigenfunctions as velocity bases to improve efficiency and save memory. We demonstrate our method on both synthetic and real data and show that it can produce better results.\",\"PeriodicalId\":412598,\"journal\":{\"name\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW58643.2023.00254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW58643.2023.00254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流体是一种常见的自然现象,经常出现在各种VR/AR应用中。一些作品使用稀疏视图图像并整合物理先验来改善重建结果。然而,现有的作品只考虑相邻框架之间的物理先验。在我们的工作中,我们提出了一种可微流体模拟器与可微渲染器相结合的流体重建方法,可以充分利用长序列的全局物理先验。此外,我们引入无散度拉普拉斯特征函数作为速度基,以提高效率和节省内存。并在合成数据和实际数据上进行了验证,结果表明该方法能取得较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Physical Prior Based Fluid Reconstruction for VR/AR
Fluid is a common natural phenomenon and often appears in various VR/AR applications. Several works use sparse view images and integrate physical priors to improve reconstruction results. However, existing works only consider physical priors between adjacent frames. In our work, we propose a differentiable fluid simulator combined with a differentiable renderer for fluid reconstruction, which can make full use of global physical priors among long series. Furthermore, we introduce divergence-free Laplacian eigenfunctions as velocity bases to improve efficiency and save memory. We demonstrate our method on both synthetic and real data and show that it can produce better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信