全印刷有机场效应晶体管的电路设计与仿真建模

Olka Kaveh, B. K. Boroujeni, Daniel Kasemann, K. Leo, F. Ellinger
{"title":"全印刷有机场效应晶体管的电路设计与仿真建模","authors":"Olka Kaveh, B. K. Boroujeni, Daniel Kasemann, K. Leo, F. Ellinger","doi":"10.1109/SMACD.2016.7520648","DOIUrl":null,"url":null,"abstract":"Organic field effect transistors (OFETs) have significantly improved during recent years. However, there is still a lack of complete compact models for these devices, due to different materials, device structures, and manufacturing processes. Previous studies on compact OFET modeling have only considered static I-V characteristics, which are subject to the bias-stress effect. In this study, for the first time, two different large-signal OFET models are optimized to small-signal experimental data, which are less sensitive to the bias-stress effect. Li's and Estrada's models are studied overall I-V regions, from sub-threshold to above-threshold, and from linear to saturation region with unified formulations. It is found that Estrada's model fits better to the trans-conductance, whereas the Li's model fits better to the intrinsic gain. Both models are implemented in ADS circuit simulator, using the Verilog-A programming language. The bootstrapped amplifier is simulated and is compared with measurement data.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of fully printed organic field effect transistors for circuit design and simulation\",\"authors\":\"Olka Kaveh, B. K. Boroujeni, Daniel Kasemann, K. Leo, F. Ellinger\",\"doi\":\"10.1109/SMACD.2016.7520648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic field effect transistors (OFETs) have significantly improved during recent years. However, there is still a lack of complete compact models for these devices, due to different materials, device structures, and manufacturing processes. Previous studies on compact OFET modeling have only considered static I-V characteristics, which are subject to the bias-stress effect. In this study, for the first time, two different large-signal OFET models are optimized to small-signal experimental data, which are less sensitive to the bias-stress effect. Li's and Estrada's models are studied overall I-V regions, from sub-threshold to above-threshold, and from linear to saturation region with unified formulations. It is found that Estrada's model fits better to the trans-conductance, whereas the Li's model fits better to the intrinsic gain. Both models are implemented in ADS circuit simulator, using the Verilog-A programming language. The bootstrapped amplifier is simulated and is compared with measurement data.\",\"PeriodicalId\":441203,\"journal\":{\"name\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2016.7520648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,有机场效应晶体管(ofet)有了显著的进步。然而,由于不同的材料、器件结构和制造工艺,这些器件仍然缺乏完整的紧凑型模型。以往关于紧凑OFET建模的研究只考虑了静态I-V特性,这些特性受到偏应力效应的影响。本研究首次针对对偏应力效应不太敏感的小信号实验数据,对两种不同的大信号OFET模型进行了优化。Li’s和Estrada的模型用统一的公式研究了整个I-V区域,从亚阈值到阈值以上,从线性到饱和区域。研究发现,Estrada模型更适合跨电导,而Li模型更适合本征增益。采用Verilog-A编程语言,在ADS电路模拟器中实现了两种模型。对自举放大器进行了仿真,并与实测数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling of fully printed organic field effect transistors for circuit design and simulation
Organic field effect transistors (OFETs) have significantly improved during recent years. However, there is still a lack of complete compact models for these devices, due to different materials, device structures, and manufacturing processes. Previous studies on compact OFET modeling have only considered static I-V characteristics, which are subject to the bias-stress effect. In this study, for the first time, two different large-signal OFET models are optimized to small-signal experimental data, which are less sensitive to the bias-stress effect. Li's and Estrada's models are studied overall I-V regions, from sub-threshold to above-threshold, and from linear to saturation region with unified formulations. It is found that Estrada's model fits better to the trans-conductance, whereas the Li's model fits better to the intrinsic gain. Both models are implemented in ADS circuit simulator, using the Verilog-A programming language. The bootstrapped amplifier is simulated and is compared with measurement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信