时变激活函数的递归神经网络稳定性分析

M. Mostafa, W. Teich, J. Lindner
{"title":"时变激活函数的递归神经网络稳定性分析","authors":"M. Mostafa, W. Teich, J. Lindner","doi":"10.1109/INDS.2011.6024816","DOIUrl":null,"url":null,"abstract":"The dynamical behavior of a single layer recurrent neural network without hidden neurons has been investigated intensively and its stability has been analyzed using the Lyapunov method. Since the pioneering work of Hopfield many modified versions of the original Hopfield network have been suggested and their stability has been proven. In this paper we generalize these results to the case of a time-varying activation function, which is very useful in the field of parameter estimation and communications.","PeriodicalId":117809,"journal":{"name":"Proceedings of the Joint INDS'11 & ISTET'11","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Stability analysis of recurrent neural networks with time-varying activation functions\",\"authors\":\"M. Mostafa, W. Teich, J. Lindner\",\"doi\":\"10.1109/INDS.2011.6024816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamical behavior of a single layer recurrent neural network without hidden neurons has been investigated intensively and its stability has been analyzed using the Lyapunov method. Since the pioneering work of Hopfield many modified versions of the original Hopfield network have been suggested and their stability has been proven. In this paper we generalize these results to the case of a time-varying activation function, which is very useful in the field of parameter estimation and communications.\",\"PeriodicalId\":117809,\"journal\":{\"name\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint INDS'11 & ISTET'11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDS.2011.6024816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint INDS'11 & ISTET'11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDS.2011.6024816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文对无隐藏神经元的单层递归神经网络的动力学行为进行了深入的研究,并利用Lyapunov方法分析了其稳定性。自Hopfield的开创性工作以来,人们提出了许多原始Hopfield网络的修改版本,并证明了它们的稳定性。在本文中,我们将这些结果推广到时变激活函数的情况,这在参数估计和通信领域是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of recurrent neural networks with time-varying activation functions
The dynamical behavior of a single layer recurrent neural network without hidden neurons has been investigated intensively and its stability has been analyzed using the Lyapunov method. Since the pioneering work of Hopfield many modified versions of the original Hopfield network have been suggested and their stability has been proven. In this paper we generalize these results to the case of a time-varying activation function, which is very useful in the field of parameter estimation and communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信