Belal M. Helal, Matthew Z. StraayerP, Michael H. PerrottP
{"title":"利用置乱时间-数字转换器和数字相关的低抖动1.6 GHz乘法DLL","authors":"Belal M. Helal, Matthew Z. StraayerP, Michael H. PerrottP","doi":"10.1109/VLSIC.2007.4342700","DOIUrl":null,"url":null,"abstract":"This paper presents a 1.6 GHz multiplying delay-locked loop (MDLL) that leverages time-to-digital conversion and a digital correlation technique to achieve low deterministic jitter while still maintaining low random jitter. A proposed time-to-digital converter consists of a ring oscillator that is gated on and off to accurately measure time and scramble the measurement's residual error. Using a 50 MHz reference, the prototype system has measured reference spurs less than -59 dBc and an overall measured jitter of 1.41 ps.","PeriodicalId":261092,"journal":{"name":"2007 IEEE Symposium on VLSI Circuits","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"A Low Jitter 1.6 GHz Multiplying DLL Utilizing a Scrambling Time-to-Digital Converter and Digital Correlation\",\"authors\":\"Belal M. Helal, Matthew Z. StraayerP, Michael H. PerrottP\",\"doi\":\"10.1109/VLSIC.2007.4342700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 1.6 GHz multiplying delay-locked loop (MDLL) that leverages time-to-digital conversion and a digital correlation technique to achieve low deterministic jitter while still maintaining low random jitter. A proposed time-to-digital converter consists of a ring oscillator that is gated on and off to accurately measure time and scramble the measurement's residual error. Using a 50 MHz reference, the prototype system has measured reference spurs less than -59 dBc and an overall measured jitter of 1.41 ps.\",\"PeriodicalId\":261092,\"journal\":{\"name\":\"2007 IEEE Symposium on VLSI Circuits\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2007.4342700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2007.4342700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low Jitter 1.6 GHz Multiplying DLL Utilizing a Scrambling Time-to-Digital Converter and Digital Correlation
This paper presents a 1.6 GHz multiplying delay-locked loop (MDLL) that leverages time-to-digital conversion and a digital correlation technique to achieve low deterministic jitter while still maintaining low random jitter. A proposed time-to-digital converter consists of a ring oscillator that is gated on and off to accurately measure time and scramble the measurement's residual error. Using a 50 MHz reference, the prototype system has measured reference spurs less than -59 dBc and an overall measured jitter of 1.41 ps.