{"title":"紧凑的CNN训练加速器与可变浮点数据路径","authors":"Jiun Hong, TaeGeon Lee, Saad Arslan, Hyungwon Kim","doi":"10.1109/ISOCC50952.2020.9332986","DOIUrl":null,"url":null,"abstract":"This paper presents a compact architecture of CNN training accelerator targeted for mobile devices. Accuracy was verified using python in the CNN structure, and accuracy was compared by applying several data types to find optimized data types. In addition, floating-point operations are used in the computation of the CNN structure, and to implemented them, we have created and verified the addition, subtraction, and multiplication circuits of floating-point. The CNN architecture was verified using python, the floating point operation was verified using Vivado, and Area was verified TSMC 180nm.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compact CNN Training Accelerator with Variable Floating-Point Datapath\",\"authors\":\"Jiun Hong, TaeGeon Lee, Saad Arslan, Hyungwon Kim\",\"doi\":\"10.1109/ISOCC50952.2020.9332986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compact architecture of CNN training accelerator targeted for mobile devices. Accuracy was verified using python in the CNN structure, and accuracy was compared by applying several data types to find optimized data types. In addition, floating-point operations are used in the computation of the CNN structure, and to implemented them, we have created and verified the addition, subtraction, and multiplication circuits of floating-point. The CNN architecture was verified using python, the floating point operation was verified using Vivado, and Area was verified TSMC 180nm.\",\"PeriodicalId\":270577,\"journal\":{\"name\":\"2020 International SoC Design Conference (ISOCC)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC50952.2020.9332986\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compact CNN Training Accelerator with Variable Floating-Point Datapath
This paper presents a compact architecture of CNN training accelerator targeted for mobile devices. Accuracy was verified using python in the CNN structure, and accuracy was compared by applying several data types to find optimized data types. In addition, floating-point operations are used in the computation of the CNN structure, and to implemented them, we have created and verified the addition, subtraction, and multiplication circuits of floating-point. The CNN architecture was verified using python, the floating point operation was verified using Vivado, and Area was verified TSMC 180nm.