基于改进ORB的RGB-D室内环境视觉里程计算法

Qianwen Ma, Wenju Li
{"title":"基于改进ORB的RGB-D室内环境视觉里程计算法","authors":"Qianwen Ma, Wenju Li","doi":"10.1109/ICIIBMS46890.2019.8991543","DOIUrl":null,"url":null,"abstract":"Pose estimation and map reconstruction are necessary conditions for autonomous robots. Considering the low positioning accuracy of autonomous robots in indoor environments, this paper presents an RGB-D visual odometry algorithm for indoor environment, which based on an improved ORB. The improved ORB algorithm based on quadtree form is used to extract the features of visual odometry. Then, optimizing camera poses by ICP algorithm. In addition, this paper selects the key frame to obtain higher accuracy of position estimation and constructs a partial map. Experiments demonstrate that the proposed RGB-D visual odometry can obtain accurate and robust estimation results in indoor environments.","PeriodicalId":444797,"journal":{"name":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGB-D Visual Odometry Algorithm Based on Improved ORB for Indoor Environments\",\"authors\":\"Qianwen Ma, Wenju Li\",\"doi\":\"10.1109/ICIIBMS46890.2019.8991543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pose estimation and map reconstruction are necessary conditions for autonomous robots. Considering the low positioning accuracy of autonomous robots in indoor environments, this paper presents an RGB-D visual odometry algorithm for indoor environment, which based on an improved ORB. The improved ORB algorithm based on quadtree form is used to extract the features of visual odometry. Then, optimizing camera poses by ICP algorithm. In addition, this paper selects the key frame to obtain higher accuracy of position estimation and constructs a partial map. Experiments demonstrate that the proposed RGB-D visual odometry can obtain accurate and robust estimation results in indoor environments.\",\"PeriodicalId\":444797,\"journal\":{\"name\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS46890.2019.8991543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS46890.2019.8991543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

姿态估计和地图重建是自主机器人的必要条件。针对自主机器人在室内环境中定位精度不高的问题,提出了一种基于改进ORB的室内环境RGB-D视觉里程计算法。采用改进的基于四叉树形式的ORB算法提取视觉里程计特征。然后,利用ICP算法优化摄像机姿态。此外,本文选择关键帧以获得更高的位置估计精度,并构造局部地图。实验表明,RGB-D视觉里程计能够在室内环境下获得准确、鲁棒的估计结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGB-D Visual Odometry Algorithm Based on Improved ORB for Indoor Environments
Pose estimation and map reconstruction are necessary conditions for autonomous robots. Considering the low positioning accuracy of autonomous robots in indoor environments, this paper presents an RGB-D visual odometry algorithm for indoor environment, which based on an improved ORB. The improved ORB algorithm based on quadtree form is used to extract the features of visual odometry. Then, optimizing camera poses by ICP algorithm. In addition, this paper selects the key frame to obtain higher accuracy of position estimation and constructs a partial map. Experiments demonstrate that the proposed RGB-D visual odometry can obtain accurate and robust estimation results in indoor environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信