K. Yao, R. E. Hudson, C. Reed, D. Chen, T. Tung, F. Lorenzelli
{"title":"无线MEM传感器网络的阵列信号处理","authors":"K. Yao, R. E. Hudson, C. Reed, D. Chen, T. Tung, F. Lorenzelli","doi":"10.1109/SIPS.1998.715764","DOIUrl":null,"url":null,"abstract":"We first review the high-level signal processing architecture of a wireless MEM sensor system for source detection, signal enhancement, localization, and identification. A blind beamformer using only the measured data of randomly distributed sensors to form a sample correlation matrix is proposed. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector of the sample correlation matrix. An effective blind beamforming estimation of the time delays of the dominant source is demonstrated. Source localization based on a novel least-squares method for time delay estimation is also given. Array system performance based on analysis, simulation, and measured acoustical/seismic sensor data is presented. Applications of such a system to multimedia, intrusion detection, and surveillance are briefly discussed.","PeriodicalId":151031,"journal":{"name":"1998 IEEE Workshop on Signal Processing Systems. SIPS 98. Design and Implementation (Cat. No.98TH8374)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Array signal processing for a wireless MEM sensor network\",\"authors\":\"K. Yao, R. E. Hudson, C. Reed, D. Chen, T. Tung, F. Lorenzelli\",\"doi\":\"10.1109/SIPS.1998.715764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We first review the high-level signal processing architecture of a wireless MEM sensor system for source detection, signal enhancement, localization, and identification. A blind beamformer using only the measured data of randomly distributed sensors to form a sample correlation matrix is proposed. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector of the sample correlation matrix. An effective blind beamforming estimation of the time delays of the dominant source is demonstrated. Source localization based on a novel least-squares method for time delay estimation is also given. Array system performance based on analysis, simulation, and measured acoustical/seismic sensor data is presented. Applications of such a system to multimedia, intrusion detection, and surveillance are briefly discussed.\",\"PeriodicalId\":151031,\"journal\":{\"name\":\"1998 IEEE Workshop on Signal Processing Systems. SIPS 98. Design and Implementation (Cat. No.98TH8374)\",\"volume\":\"173 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE Workshop on Signal Processing Systems. SIPS 98. Design and Implementation (Cat. No.98TH8374)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIPS.1998.715764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Workshop on Signal Processing Systems. SIPS 98. Design and Implementation (Cat. No.98TH8374)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIPS.1998.715764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Array signal processing for a wireless MEM sensor network
We first review the high-level signal processing architecture of a wireless MEM sensor system for source detection, signal enhancement, localization, and identification. A blind beamformer using only the measured data of randomly distributed sensors to form a sample correlation matrix is proposed. The maximum power collection criterion is used to obtain array weights from the dominant eigenvector of the sample correlation matrix. An effective blind beamforming estimation of the time delays of the dominant source is demonstrated. Source localization based on a novel least-squares method for time delay estimation is also given. Array system performance based on analysis, simulation, and measured acoustical/seismic sensor data is presented. Applications of such a system to multimedia, intrusion detection, and surveillance are briefly discussed.