空间相关辐射条件下硅音叉谐振器的评价

T. Bandi, J. Baborowski, A. Dommann, H. Shea, F. Cardot, A. Neels
{"title":"空间相关辐射条件下硅音叉谐振器的评价","authors":"T. Bandi, J. Baborowski, A. Dommann, H. Shea, F. Cardot, A. Neels","doi":"10.1117/12.2044209","DOIUrl":null,"url":null,"abstract":"This work reports on irradiations made on silicon bulk-acoustic wave resonators. The resonators were based on a tuning fork geometry and actuated by a piezoelectric aluminum nitride layer. They had a resonance frequency of 150 kHz and a quality factor of about 20000 under vacuum. The susceptibility of the devices to radiation induced degradation was investigated using 60Co γ-rays and 50 MeV protons with space-relevant doses of up to 170 krad. The performance of the devices after irradiation indicated a high tolerance to both ionizing damage and displacement damage effects. The results support the efforts towards design and fabrication of highly reliable MEMS devices for space applications.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions\",\"authors\":\"T. Bandi, J. Baborowski, A. Dommann, H. Shea, F. Cardot, A. Neels\",\"doi\":\"10.1117/12.2044209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work reports on irradiations made on silicon bulk-acoustic wave resonators. The resonators were based on a tuning fork geometry and actuated by a piezoelectric aluminum nitride layer. They had a resonance frequency of 150 kHz and a quality factor of about 20000 under vacuum. The susceptibility of the devices to radiation induced degradation was investigated using 60Co γ-rays and 50 MeV protons with space-relevant doses of up to 170 krad. The performance of the devices after irradiation indicated a high tolerance to both ionizing damage and displacement damage effects. The results support the efforts towards design and fabrication of highly reliable MEMS devices for space applications.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2044209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2044209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文报道了在硅体声波谐振器上的辐照。谐振器基于音叉几何形状,由压电氮化铝层驱动。它们的共振频率为150千赫,真空条件下的质量因数约为20000。利用60Co γ射线和50 MeV质子(空间相关剂量高达170 krad)研究了器件对辐射诱导降解的敏感性。辐照后器件的性能表明对电离损伤和位移损伤的耐受性都很高。这些结果支持了为空间应用设计和制造高可靠性MEMS器件的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation of silicon tuning-fork resonators under space-relevant radiation conditions
This work reports on irradiations made on silicon bulk-acoustic wave resonators. The resonators were based on a tuning fork geometry and actuated by a piezoelectric aluminum nitride layer. They had a resonance frequency of 150 kHz and a quality factor of about 20000 under vacuum. The susceptibility of the devices to radiation induced degradation was investigated using 60Co γ-rays and 50 MeV protons with space-relevant doses of up to 170 krad. The performance of the devices after irradiation indicated a high tolerance to both ionizing damage and displacement damage effects. The results support the efforts towards design and fabrication of highly reliable MEMS devices for space applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信