钨污染栅极氧化物击穿的SIMS分析

D. Gui, Z. X. Xing, Z. Mo, Y. Hua, S.P. Zhao
{"title":"钨污染栅极氧化物击穿的SIMS分析","authors":"D. Gui, Z. X. Xing, Z. Mo, Y. Hua, S.P. Zhao","doi":"10.1109/SMELEC.2006.381107","DOIUrl":null,"url":null,"abstract":"The gate oxide is the most fragile element of metal-oxide-semiconductor (MOS) transistor. Metallic contamination in the gate oxide leads to high leak current and even gate oxide breakdown. In this paper, we have investigated a failure case of NMOS gate oxide breakdown using secondary ion mass spectrometry (SIMS) because of its excellent sensitivity. The SIMS depth profiles at the test pad in the scribe line showed that the gate oxide breakdown was caused by tungsten (W) contamination. Further study indicated that W contaminated wafers during n-poly implantation by the re-deposition from the supporting disk of implanter. Based on the SIMS results, measures have been suggested to reduce the W contamination.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIMS Analysis of Gate Oxide Breakdown Due to Tungsten Contamination\",\"authors\":\"D. Gui, Z. X. Xing, Z. Mo, Y. Hua, S.P. Zhao\",\"doi\":\"10.1109/SMELEC.2006.381107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The gate oxide is the most fragile element of metal-oxide-semiconductor (MOS) transistor. Metallic contamination in the gate oxide leads to high leak current and even gate oxide breakdown. In this paper, we have investigated a failure case of NMOS gate oxide breakdown using secondary ion mass spectrometry (SIMS) because of its excellent sensitivity. The SIMS depth profiles at the test pad in the scribe line showed that the gate oxide breakdown was caused by tungsten (W) contamination. Further study indicated that W contaminated wafers during n-poly implantation by the re-deposition from the supporting disk of implanter. Based on the SIMS results, measures have been suggested to reduce the W contamination.\",\"PeriodicalId\":136703,\"journal\":{\"name\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Semiconductor Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2006.381107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.381107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

栅极氧化物是金属氧化物半导体(MOS)晶体管中最脆弱的元件。栅极氧化物中的金属污染导致高泄漏电流甚至栅极氧化物击穿。本文利用次级离子质谱法(SIMS)研究了NMOS栅极氧化物击穿的失效案例,该方法具有优异的灵敏度。在测试台上的SIMS深度曲线显示栅极氧化物击穿是由钨污染引起的。进一步研究表明,在n-poly注入过程中,W污染晶圆是通过注入器支撑盘的再沉积而形成的。根据SIMS结果,提出了减少W污染的措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIMS Analysis of Gate Oxide Breakdown Due to Tungsten Contamination
The gate oxide is the most fragile element of metal-oxide-semiconductor (MOS) transistor. Metallic contamination in the gate oxide leads to high leak current and even gate oxide breakdown. In this paper, we have investigated a failure case of NMOS gate oxide breakdown using secondary ion mass spectrometry (SIMS) because of its excellent sensitivity. The SIMS depth profiles at the test pad in the scribe line showed that the gate oxide breakdown was caused by tungsten (W) contamination. Further study indicated that W contaminated wafers during n-poly implantation by the re-deposition from the supporting disk of implanter. Based on the SIMS results, measures have been suggested to reduce the W contamination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信