一种通过检查来修改系统无限结构的方法

J. Orozco, E. Ruiz-Beltrán
{"title":"一种通过检查来修改系统无限结构的方法","authors":"J. Orozco, E. Ruiz-Beltrán","doi":"10.1109/ICEEE.2006.251885","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology to modify the infinite structure of a linear multivariable system with the same essential orders. This method is simpler in calculus than a geometric approach. The general idea of the proposed method is to determine how we must modify each element of the I4 Morse's list in order to obtain the essential orders of the system, supporting a system of equations based on the information of the I2 Morse's list. This modification is made by a static state feedback","PeriodicalId":125310,"journal":{"name":"2006 3rd International Conference on Electrical and Electronics Engineering","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method by inspection to modify the infinite structure of a system\",\"authors\":\"J. Orozco, E. Ruiz-Beltrán\",\"doi\":\"10.1109/ICEEE.2006.251885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology to modify the infinite structure of a linear multivariable system with the same essential orders. This method is simpler in calculus than a geometric approach. The general idea of the proposed method is to determine how we must modify each element of the I4 Morse's list in order to obtain the essential orders of the system, supporting a system of equations based on the information of the I2 Morse's list. This modification is made by a static state feedback\",\"PeriodicalId\":125310,\"journal\":{\"name\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 3rd International Conference on Electrical and Electronics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2006.251885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 3rd International Conference on Electrical and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2006.251885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种修正具有相同本质阶数的线性多变量系统无穷结构的方法。这种方法在微积分上比几何方法更简单。所提出的方法的总体思想是确定我们必须如何修改I4莫尔斯表的每个元素,以获得系统的基本阶数,支持基于I2莫尔斯表信息的方程组。这种修改是通过静态反馈来实现的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method by inspection to modify the infinite structure of a system
This paper proposes a methodology to modify the infinite structure of a linear multivariable system with the same essential orders. This method is simpler in calculus than a geometric approach. The general idea of the proposed method is to determine how we must modify each element of the I4 Morse's list in order to obtain the essential orders of the system, supporting a system of equations based on the information of the I2 Morse's list. This modification is made by a static state feedback
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信