利用Dupin环实现可微超二次曲面与平面或球面的混合

Lionel Garnier, S. Foufou, Y. Fougerolle
{"title":"利用Dupin环实现可微超二次曲面与平面或球面的混合","authors":"Lionel Garnier, S. Foufou, Y. Fougerolle","doi":"10.1109/SITIS.2008.73","DOIUrl":null,"url":null,"abstract":"In this article, we present a method to perform G1-continuous blends between a differentiable superquadric of revolution and a plane or a sphere using Dupin cyclides. These blends are patches delimited by four lines of curvature. They allow to avoid parameterization problems that may occur when parametric surfaces are used. Rational quadratic Bezier curves are used to approximate the principal circles of the Dupin cyclide blends and thus a complex 3D problem is now reduced to a simpler 2D problem. We present the necessary conditions to be satisfied to create the blending patches and illustrate our approach by a number of superellipsoid/plane and superellipsoid/sphere blending examples.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"G1-Blend between a Differentiable Superquadric of Revolution and a Plane or a Sphere Using Dupin Cyclides\",\"authors\":\"Lionel Garnier, S. Foufou, Y. Fougerolle\",\"doi\":\"10.1109/SITIS.2008.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we present a method to perform G1-continuous blends between a differentiable superquadric of revolution and a plane or a sphere using Dupin cyclides. These blends are patches delimited by four lines of curvature. They allow to avoid parameterization problems that may occur when parametric surfaces are used. Rational quadratic Bezier curves are used to approximate the principal circles of the Dupin cyclide blends and thus a complex 3D problem is now reduced to a simpler 2D problem. We present the necessary conditions to be satisfied to create the blending patches and illustrate our approach by a number of superellipsoid/plane and superellipsoid/sphere blending examples.\",\"PeriodicalId\":202698,\"journal\":{\"name\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2008.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出了一种利用Dupin环求解旋转可微超二次曲面与平面或球面间g1 -连续共混的方法。这些混合物是由四条弧线划分的斑块。它们可以避免在使用参数曲面时可能出现的参数化问题。有理二次Bezier曲线被用来近似Dupin循环混合的主圆,从而将复杂的3D问题简化为更简单的2D问题。我们提出了创建混合补丁需要满足的必要条件,并通过一些超椭球/平面和超椭球/球体的混合实例来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
G1-Blend between a Differentiable Superquadric of Revolution and a Plane or a Sphere Using Dupin Cyclides
In this article, we present a method to perform G1-continuous blends between a differentiable superquadric of revolution and a plane or a sphere using Dupin cyclides. These blends are patches delimited by four lines of curvature. They allow to avoid parameterization problems that may occur when parametric surfaces are used. Rational quadratic Bezier curves are used to approximate the principal circles of the Dupin cyclide blends and thus a complex 3D problem is now reduced to a simpler 2D problem. We present the necessary conditions to be satisfied to create the blending patches and illustrate our approach by a number of superellipsoid/plane and superellipsoid/sphere blending examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信