{"title":"考虑安全约束的移动机器人变分辨率速度路径生成","authors":"J. Xiang, Y. Tazaki, Tatsuya Suzuki, B. Levedahl","doi":"10.1109/ROBIO.2012.6491075","DOIUrl":null,"url":null,"abstract":"This research develops a new roadmap method for autonomous mobile robots based on variable-resolution partitioning of a continuous state space. Unlike conventional roadmaps, which include position information only, the proposed roadmap also includes velocity information. Each node of the proposed roadmap consists of a fixed position and a range of velocity values, where the velocity ranges are determined by variable-resolution partitioning of the velocity space. An ordered pair of nodes is connected by a directed link if any combination of their velocity values is within the acceptable range of the nodes and produces a trajectory satisfying a set of safety constraints. In this manner, a possible trajectory connecting an arbitrary starting node and destination node is obtained by applying a graph search technique on the proposed roadmap. The proposed method is evaluated through simulations.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Variable-resolution velocity roadmap generation considering safety constraints for mobile robots\",\"authors\":\"J. Xiang, Y. Tazaki, Tatsuya Suzuki, B. Levedahl\",\"doi\":\"10.1109/ROBIO.2012.6491075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research develops a new roadmap method for autonomous mobile robots based on variable-resolution partitioning of a continuous state space. Unlike conventional roadmaps, which include position information only, the proposed roadmap also includes velocity information. Each node of the proposed roadmap consists of a fixed position and a range of velocity values, where the velocity ranges are determined by variable-resolution partitioning of the velocity space. An ordered pair of nodes is connected by a directed link if any combination of their velocity values is within the acceptable range of the nodes and produces a trajectory satisfying a set of safety constraints. In this manner, a possible trajectory connecting an arbitrary starting node and destination node is obtained by applying a graph search technique on the proposed roadmap. The proposed method is evaluated through simulations.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variable-resolution velocity roadmap generation considering safety constraints for mobile robots
This research develops a new roadmap method for autonomous mobile robots based on variable-resolution partitioning of a continuous state space. Unlike conventional roadmaps, which include position information only, the proposed roadmap also includes velocity information. Each node of the proposed roadmap consists of a fixed position and a range of velocity values, where the velocity ranges are determined by variable-resolution partitioning of the velocity space. An ordered pair of nodes is connected by a directed link if any combination of their velocity values is within the acceptable range of the nodes and produces a trajectory satisfying a set of safety constraints. In this manner, a possible trajectory connecting an arbitrary starting node and destination node is obtained by applying a graph search technique on the proposed roadmap. The proposed method is evaluated through simulations.