轻量解决人群计数时的背景噪音

T. Thai, N. Ly
{"title":"轻量解决人群计数时的背景噪音","authors":"T. Thai, N. Ly","doi":"10.1109/NICS51282.2020.9335834","DOIUrl":null,"url":null,"abstract":"This paper proposed Dilated Compact Convolutional Neural Network (DCCNN) for single-image crowd density estimation from the original lightweight C-CNN. DCCNN is an enhancement of lightweight C-CNN compensated for lack of mechanisms to alleviate background noise using dilated convolution and average pooling. The performance of our proposed model improves significantly on medium and spared crowd scenes in ShanghaiTech part B dataset, achieving 18% lower MAE compared to C-CNN while requiring virtually no additional computational costs.","PeriodicalId":308944,"journal":{"name":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight solution to background noise in crowd counting\",\"authors\":\"T. Thai, N. Ly\",\"doi\":\"10.1109/NICS51282.2020.9335834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed Dilated Compact Convolutional Neural Network (DCCNN) for single-image crowd density estimation from the original lightweight C-CNN. DCCNN is an enhancement of lightweight C-CNN compensated for lack of mechanisms to alleviate background noise using dilated convolution and average pooling. The performance of our proposed model improves significantly on medium and spared crowd scenes in ShanghaiTech part B dataset, achieving 18% lower MAE compared to C-CNN while requiring virtually no additional computational costs.\",\"PeriodicalId\":308944,\"journal\":{\"name\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS51282.2020.9335834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 7th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS51282.2020.9335834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文在原始轻量级C-CNN的基础上,提出了用于单幅图像人群密度估计的扩展紧凑卷积神经网络(DCCNN)。DCCNN是轻量级C-CNN的增强,弥补了使用扩张卷积和平均池化来缓解背景噪声机制的不足。我们提出的模型在上海科技B部分数据集的中人群和非人群场景上的性能显著提高,与C-CNN相比,MAE降低了18%,同时几乎不需要额外的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight solution to background noise in crowd counting
This paper proposed Dilated Compact Convolutional Neural Network (DCCNN) for single-image crowd density estimation from the original lightweight C-CNN. DCCNN is an enhancement of lightweight C-CNN compensated for lack of mechanisms to alleviate background noise using dilated convolution and average pooling. The performance of our proposed model improves significantly on medium and spared crowd scenes in ShanghaiTech part B dataset, achieving 18% lower MAE compared to C-CNN while requiring virtually no additional computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信