动态图上的永久支配集

S. Mandal, Arobinda Gupta
{"title":"动态图上的永久支配集","authors":"S. Mandal, Arobinda Gupta","doi":"10.1109/COMSNETS.2016.7439959","DOIUrl":null,"url":null,"abstract":"We present a greedy approximation algorithm to solve the problem of finding a minimum permanent dominating set for a given dynamic graph represented using the evolving graphs model. The node set of the dynamic graph is static and only the edge set changes with time. All the change information over the lifetime of the dynamic graph is known apriori. The proposed algorithm is an O(ln(nτ))-approximation algorithm, where n is the number of nodes and τ is the lifetime of the dynamic graph.","PeriodicalId":185861,"journal":{"name":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Permanent dominating set on dynamic graphs\",\"authors\":\"S. Mandal, Arobinda Gupta\",\"doi\":\"10.1109/COMSNETS.2016.7439959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a greedy approximation algorithm to solve the problem of finding a minimum permanent dominating set for a given dynamic graph represented using the evolving graphs model. The node set of the dynamic graph is static and only the edge set changes with time. All the change information over the lifetime of the dynamic graph is known apriori. The proposed algorithm is an O(ln(nτ))-approximation algorithm, where n is the number of nodes and τ is the lifetime of the dynamic graph.\",\"PeriodicalId\":185861,\"journal\":{\"name\":\"2016 8th International Conference on Communication Systems and Networks (COMSNETS)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th International Conference on Communication Systems and Networks (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS.2016.7439959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Communication Systems and Networks (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS.2016.7439959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种贪心逼近算法,用于求解用演化图模型表示的给定动态图的最小永久支配集问题。动态图的节点集是静态的,只有边集随时间变化。动态图生命周期内的所有变化信息都是先验已知的。所提出的算法是一个O(ln(nτ))-近似算法,其中n为节点数,τ为动态图的生存期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Permanent dominating set on dynamic graphs
We present a greedy approximation algorithm to solve the problem of finding a minimum permanent dominating set for a given dynamic graph represented using the evolving graphs model. The node set of the dynamic graph is static and only the edge set changes with time. All the change information over the lifetime of the dynamic graph is known apriori. The proposed algorithm is an O(ln(nτ))-approximation algorithm, where n is the number of nodes and τ is the lifetime of the dynamic graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信