双延迟输入光库计算机性能分析

Stefana Bogojević, M. Banovic, J. Crnjanski, M. Krstić, D. Gvozdić
{"title":"双延迟输入光库计算机性能分析","authors":"Stefana Bogojević, M. Banovic, J. Crnjanski, M. Krstić, D. Gvozdić","doi":"10.1109/TELFOR56187.2022.9983772","DOIUrl":null,"url":null,"abstract":"In this paper, a novel reservoir computing architecture based on the single nonlinear node with two delayed inputs is presented. Its performance is investigated on time-series forecasting tasks, for two different profiles of activation functions implemented in the optical domain. Simulation results show reduced NRMSE value to around 3% for Mackey-Glass time series prediction 11 steps in advance, when sine squared optical activation function based on Mach-Zehnder modulator is used.","PeriodicalId":277553,"journal":{"name":"2022 30th Telecommunications Forum (TELFOR)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performance Analysis of Optical Reservoir Computer with Two Delayed Inputs\",\"authors\":\"Stefana Bogojević, M. Banovic, J. Crnjanski, M. Krstić, D. Gvozdić\",\"doi\":\"10.1109/TELFOR56187.2022.9983772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel reservoir computing architecture based on the single nonlinear node with two delayed inputs is presented. Its performance is investigated on time-series forecasting tasks, for two different profiles of activation functions implemented in the optical domain. Simulation results show reduced NRMSE value to around 3% for Mackey-Glass time series prediction 11 steps in advance, when sine squared optical activation function based on Mach-Zehnder modulator is used.\",\"PeriodicalId\":277553,\"journal\":{\"name\":\"2022 30th Telecommunications Forum (TELFOR)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Telecommunications Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR56187.2022.9983772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Telecommunications Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR56187.2022.9983772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的基于单非线性节点双延迟输入的油藏计算体系结构。在时间序列预测任务中,研究了两种不同的激活函数在光域实现的性能。仿真结果表明,当使用基于Mach-Zehnder调制器的正弦平方光激活函数时,可以提前11步预测Mackey-Glass时间序列,NRMSE值降低到3%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Analysis of Optical Reservoir Computer with Two Delayed Inputs
In this paper, a novel reservoir computing architecture based on the single nonlinear node with two delayed inputs is presented. Its performance is investigated on time-series forecasting tasks, for two different profiles of activation functions implemented in the optical domain. Simulation results show reduced NRMSE value to around 3% for Mackey-Glass time series prediction 11 steps in advance, when sine squared optical activation function based on Mach-Zehnder modulator is used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信