企业自动化:一种强化学习方法

Ipseeta Nanda, Rajesh De
{"title":"企业自动化:一种强化学习方法","authors":"Ipseeta Nanda, Rajesh De","doi":"10.26480/imcs.02.2022.28.30","DOIUrl":null,"url":null,"abstract":"In most automation, we use ANN or RNN based algorithms. This results well but the prior information is what actions were previously taken by a human, this cannot be the only measure of learning a process we know humans learn everything with experience. And the most appropriate algorithm to learn like a human is Reinforcement Learning","PeriodicalId":292564,"journal":{"name":"INFORMATION MANAGEMENT AND COMPUTER SCIENCE","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FIRM AUTOMATION: A REINFORCEMENT LEARNING APPROACH\",\"authors\":\"Ipseeta Nanda, Rajesh De\",\"doi\":\"10.26480/imcs.02.2022.28.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In most automation, we use ANN or RNN based algorithms. This results well but the prior information is what actions were previously taken by a human, this cannot be the only measure of learning a process we know humans learn everything with experience. And the most appropriate algorithm to learn like a human is Reinforcement Learning\",\"PeriodicalId\":292564,\"journal\":{\"name\":\"INFORMATION MANAGEMENT AND COMPUTER SCIENCE\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INFORMATION MANAGEMENT AND COMPUTER SCIENCE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26480/imcs.02.2022.28.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMATION MANAGEMENT AND COMPUTER SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26480/imcs.02.2022.28.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大多数自动化中,我们使用基于人工神经网络或RNN的算法。结果很好,但先验信息是人类之前采取的行动,这不能是学习的唯一衡量标准,我们知道人类通过经验学习一切。最适合像人类一样学习的算法是强化学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FIRM AUTOMATION: A REINFORCEMENT LEARNING APPROACH
In most automation, we use ANN or RNN based algorithms. This results well but the prior information is what actions were previously taken by a human, this cannot be the only measure of learning a process we know humans learn everything with experience. And the most appropriate algorithm to learn like a human is Reinforcement Learning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信