创建具有代表性的城市高速公路交通场景:初步观察

Filip Vrbanić, Mladen Miletić, E. Ivanjko, Ž. Majstorović
{"title":"创建具有代表性的城市高速公路交通场景:初步观察","authors":"Filip Vrbanić, Mladen Miletić, E. Ivanjko, Ž. Majstorović","doi":"10.1109/ELMAR52657.2021.9550867","DOIUrl":null,"url":null,"abstract":"Traffic patterns are useful for analyzing and identifying representative traffic scenarios from traffic data. Traffic scenarios are important when machine learning is used for traffic control to ensure good controller performance in all cases. This article tackles the problem of identifying relevant scenarios from clustered data for urban mobility analysis. The unsupervised learning approaches k-means, principal component analysis, and self-organizing maps were applied on real traffic data from Slovenian motorways to analyze and group traffic scenarios. Obtained observations present a solid foundation for future research on a wide-scale data-set, including data from more measuring points for creating relevant traffic scenarios for learning of traffic controllers.","PeriodicalId":410503,"journal":{"name":"2021 International Symposium ELMAR","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Creating Representative Urban Motorway Traffic Scenarios: Initial Observations\",\"authors\":\"Filip Vrbanić, Mladen Miletić, E. Ivanjko, Ž. Majstorović\",\"doi\":\"10.1109/ELMAR52657.2021.9550867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic patterns are useful for analyzing and identifying representative traffic scenarios from traffic data. Traffic scenarios are important when machine learning is used for traffic control to ensure good controller performance in all cases. This article tackles the problem of identifying relevant scenarios from clustered data for urban mobility analysis. The unsupervised learning approaches k-means, principal component analysis, and self-organizing maps were applied on real traffic data from Slovenian motorways to analyze and group traffic scenarios. Obtained observations present a solid foundation for future research on a wide-scale data-set, including data from more measuring points for creating relevant traffic scenarios for learning of traffic controllers.\",\"PeriodicalId\":410503,\"journal\":{\"name\":\"2021 International Symposium ELMAR\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR52657.2021.9550867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR52657.2021.9550867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

交通模式对于从交通数据中分析和识别具有代表性的交通场景非常有用。当机器学习用于流量控制以确保控制器在所有情况下的良好性能时,流量场景非常重要。本文解决了从聚类数据中识别相关场景以用于城市交通分析的问题。将无监督学习方法k-means、主成分分析和自组织地图应用于斯洛文尼亚高速公路的真实交通数据,对交通场景进行分析和分组。获得的观测结果为未来更大规模数据集的研究提供了坚实的基础,包括来自更多测点的数据,用于创建相关的交通场景,以供交通管制员学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Creating Representative Urban Motorway Traffic Scenarios: Initial Observations
Traffic patterns are useful for analyzing and identifying representative traffic scenarios from traffic data. Traffic scenarios are important when machine learning is used for traffic control to ensure good controller performance in all cases. This article tackles the problem of identifying relevant scenarios from clustered data for urban mobility analysis. The unsupervised learning approaches k-means, principal component analysis, and self-organizing maps were applied on real traffic data from Slovenian motorways to analyze and group traffic scenarios. Obtained observations present a solid foundation for future research on a wide-scale data-set, including data from more measuring points for creating relevant traffic scenarios for learning of traffic controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信