自主勘探中地形遍历代价的在线增量学习

Miloš Prágr, P. Čížek, J. Bayer, J. Faigl
{"title":"自主勘探中地形遍历代价的在线增量学习","authors":"Miloš Prágr, P. Čížek, J. Bayer, J. Faigl","doi":"10.15607/RSS.2019.XV.040","DOIUrl":null,"url":null,"abstract":"In this paper, we address motion efficiency in autonomous robot exploration with multi-legged walking robots that can traverse rough terrains at the cost of lower efficiency and greater body vibration. We propose a robotic system for online and incremental learning of the terrain traversal cost that is immediately utilized to reason about next navigational goals in building spatial model of the robot surrounding. The traversal cost experienced by the robot is characterized by incrementally constructed Gaussian Processes using Bayesian Committee Machine. During the exploration, the robot builds the spatial terrain model, marks untraversable areas, and leverages the Gaussian Process predictive variance to decide whether to improve the spatial model or decrease the uncertainty of the terrain traversal cost. The feasibility of the proposed approach has been experimentally verified in a fully autonomous deployment with the hexapod walking robot.","PeriodicalId":307591,"journal":{"name":"Robotics: Science and Systems XV","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Online Incremental Learning of the Terrain Traversal Cost in Autonomous Exploration\",\"authors\":\"Miloš Prágr, P. Čížek, J. Bayer, J. Faigl\",\"doi\":\"10.15607/RSS.2019.XV.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address motion efficiency in autonomous robot exploration with multi-legged walking robots that can traverse rough terrains at the cost of lower efficiency and greater body vibration. We propose a robotic system for online and incremental learning of the terrain traversal cost that is immediately utilized to reason about next navigational goals in building spatial model of the robot surrounding. The traversal cost experienced by the robot is characterized by incrementally constructed Gaussian Processes using Bayesian Committee Machine. During the exploration, the robot builds the spatial terrain model, marks untraversable areas, and leverages the Gaussian Process predictive variance to decide whether to improve the spatial model or decrease the uncertainty of the terrain traversal cost. The feasibility of the proposed approach has been experimentally verified in a fully autonomous deployment with the hexapod walking robot.\",\"PeriodicalId\":307591,\"journal\":{\"name\":\"Robotics: Science and Systems XV\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics: Science and Systems XV\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2019.XV.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XV","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2019.XV.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们使用多腿步行机器人来解决自主机器人探索中的运动效率问题,该机器人可以以较低的效率和较大的身体振动为代价穿越崎岖的地形。我们提出了一种机器人系统,用于在线和增量学习地形遍历成本,该成本可立即用于在构建机器人周围空间模型时推断下一个导航目标。机器人所经历的遍历代价用贝叶斯委员会机增量构造的高斯过程来表征。在探索过程中,机器人建立空间地形模型,标记不可穿越区域,并利用高斯过程预测方差来决定是否改进空间模型或降低地形穿越成本的不确定性。在六足步行机器人的完全自主部署中,实验验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Incremental Learning of the Terrain Traversal Cost in Autonomous Exploration
In this paper, we address motion efficiency in autonomous robot exploration with multi-legged walking robots that can traverse rough terrains at the cost of lower efficiency and greater body vibration. We propose a robotic system for online and incremental learning of the terrain traversal cost that is immediately utilized to reason about next navigational goals in building spatial model of the robot surrounding. The traversal cost experienced by the robot is characterized by incrementally constructed Gaussian Processes using Bayesian Committee Machine. During the exploration, the robot builds the spatial terrain model, marks untraversable areas, and leverages the Gaussian Process predictive variance to decide whether to improve the spatial model or decrease the uncertainty of the terrain traversal cost. The feasibility of the proposed approach has been experimentally verified in a fully autonomous deployment with the hexapod walking robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信