使用机器学习回归算法的容量损失分析

Sergen Atay, A. Ayranci, B. Erkmen
{"title":"使用机器学习回归算法的容量损失分析","authors":"Sergen Atay, A. Ayranci, B. Erkmen","doi":"10.1109/ICEEE55327.2022.9772532","DOIUrl":null,"url":null,"abstract":"In this study, time dependent measurements of the power capacitor, which is the main equipment of a compensation unit, are given. The power capacitor is actively working in an industrial facility. Six months of the data from this capacitor were recorded and tests were carried out using Machine Learning (ML) algorithms for its remaining useful life. ML algorithms were selected from the algorithms that used for regression problems. In the study, Support Vector Machine (SVM), Linear Regression (LR) and Regression Trees (RT) algorithms were used. The rated powers of the analyzed capacitor are 50kVAR and 25kVAR from the active plant. The data set was created by running the capacitor continuously for 6 months and the capacity loss was examined with using ML algorithms. The algorithm that gives the best result in the regression analyzes is the LR algorithm. With the results obtained, it is possible to analyze how long the useful life of capacitors with the same characteristics have under the same stress.","PeriodicalId":375340,"journal":{"name":"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacity Loss Analysis Using Machine Learning Regression Algorithms\",\"authors\":\"Sergen Atay, A. Ayranci, B. Erkmen\",\"doi\":\"10.1109/ICEEE55327.2022.9772532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, time dependent measurements of the power capacitor, which is the main equipment of a compensation unit, are given. The power capacitor is actively working in an industrial facility. Six months of the data from this capacitor were recorded and tests were carried out using Machine Learning (ML) algorithms for its remaining useful life. ML algorithms were selected from the algorithms that used for regression problems. In the study, Support Vector Machine (SVM), Linear Regression (LR) and Regression Trees (RT) algorithms were used. The rated powers of the analyzed capacitor are 50kVAR and 25kVAR from the active plant. The data set was created by running the capacitor continuously for 6 months and the capacity loss was examined with using ML algorithms. The algorithm that gives the best result in the regression analyzes is the LR algorithm. With the results obtained, it is possible to analyze how long the useful life of capacitors with the same characteristics have under the same stress.\",\"PeriodicalId\":375340,\"journal\":{\"name\":\"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE55327.2022.9772532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 9th International Conference on Electrical and Electronics Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE55327.2022.9772532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对补偿装置的主要设备——功率电容器进行了随时间变化的测量。电力电容器在工业设施中积极工作。记录了该电容器六个月的数据,并使用机器学习(ML)算法对其剩余使用寿命进行了测试。ML算法是从用于回归问题的算法中选择的。本研究采用支持向量机(SVM)、线性回归(LR)和回归树(RT)算法。所分析电容器的额定功率分别为50kVAR和25kVAR。通过连续运行电容器6个月创建数据集,并使用ML算法检查容量损失。在回归分析中给出最好结果的算法是LR算法。根据得到的结果,可以分析在相同应力下具有相同特性的电容器的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity Loss Analysis Using Machine Learning Regression Algorithms
In this study, time dependent measurements of the power capacitor, which is the main equipment of a compensation unit, are given. The power capacitor is actively working in an industrial facility. Six months of the data from this capacitor were recorded and tests were carried out using Machine Learning (ML) algorithms for its remaining useful life. ML algorithms were selected from the algorithms that used for regression problems. In the study, Support Vector Machine (SVM), Linear Regression (LR) and Regression Trees (RT) algorithms were used. The rated powers of the analyzed capacitor are 50kVAR and 25kVAR from the active plant. The data set was created by running the capacitor continuously for 6 months and the capacity loss was examined with using ML algorithms. The algorithm that gives the best result in the regression analyzes is the LR algorithm. With the results obtained, it is possible to analyze how long the useful life of capacitors with the same characteristics have under the same stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信