{"title":"一种提高智能配电网弹性的软件定义方法","authors":"G. Brown, N. Ventura, Joyce B. Mwangama","doi":"10.1109/SAUPEC/RobMech/PRASA48453.2020.9041133","DOIUrl":null,"url":null,"abstract":"Smart grid is an essential part of the world's changing energy landscape. The uptake of smart grid by utilities is however hampered by the perceived complexity and large capital investment required to implement resilient Information Communication Technology (ICT) and networks that can support self-healing smart grids. Furthermore, failure to meet stringent smart grid communication reliability requirements can have disastrous consequences for grid owners and users. Many of the challenges utilities face with their smart grid ICT network development plans can be attributed to a reliance on conventional designs centred on expanding network hardware infrastructure in vast grid networks. What is needed to overcome these challenges is alternative ways of designing smart grid communication networks, using software defined approaches. This paper proposes a framework that supports software defined designs by combining the principles of the Internet of Things (IoT) paradigm and Machine-to-Machine (M2M) communication. Using the frameworks of software defined systems and virtualisation, our proposed architecture aims to provide a more flexible and affordable approach to developing and maintaining grid communication networks while offering a high level of network reliability, required for various smart grid applications. An evaluation of the implementation of this architecture in a design, based on a real city distribution grid, shows that a software defined communication network is easy to implement when using virtual machines running on existing computer infrastructure and that it is capable of supporting the network functions required for improving communication reliability. We conclude that this approach can potentially promote the adoption of smart grid by utilities while offering new innovative ways for smart grid developers to improve their grid designs.","PeriodicalId":215514,"journal":{"name":"2020 International SAUPEC/RobMech/PRASA Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Software Defined Approach for Improving Resilience in Smart Distribution Grids\",\"authors\":\"G. Brown, N. Ventura, Joyce B. Mwangama\",\"doi\":\"10.1109/SAUPEC/RobMech/PRASA48453.2020.9041133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grid is an essential part of the world's changing energy landscape. The uptake of smart grid by utilities is however hampered by the perceived complexity and large capital investment required to implement resilient Information Communication Technology (ICT) and networks that can support self-healing smart grids. Furthermore, failure to meet stringent smart grid communication reliability requirements can have disastrous consequences for grid owners and users. Many of the challenges utilities face with their smart grid ICT network development plans can be attributed to a reliance on conventional designs centred on expanding network hardware infrastructure in vast grid networks. What is needed to overcome these challenges is alternative ways of designing smart grid communication networks, using software defined approaches. This paper proposes a framework that supports software defined designs by combining the principles of the Internet of Things (IoT) paradigm and Machine-to-Machine (M2M) communication. Using the frameworks of software defined systems and virtualisation, our proposed architecture aims to provide a more flexible and affordable approach to developing and maintaining grid communication networks while offering a high level of network reliability, required for various smart grid applications. An evaluation of the implementation of this architecture in a design, based on a real city distribution grid, shows that a software defined communication network is easy to implement when using virtual machines running on existing computer infrastructure and that it is capable of supporting the network functions required for improving communication reliability. We conclude that this approach can potentially promote the adoption of smart grid by utilities while offering new innovative ways for smart grid developers to improve their grid designs.\",\"PeriodicalId\":215514,\"journal\":{\"name\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SAUPEC/RobMech/PRASA Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Software Defined Approach for Improving Resilience in Smart Distribution Grids
Smart grid is an essential part of the world's changing energy landscape. The uptake of smart grid by utilities is however hampered by the perceived complexity and large capital investment required to implement resilient Information Communication Technology (ICT) and networks that can support self-healing smart grids. Furthermore, failure to meet stringent smart grid communication reliability requirements can have disastrous consequences for grid owners and users. Many of the challenges utilities face with their smart grid ICT network development plans can be attributed to a reliance on conventional designs centred on expanding network hardware infrastructure in vast grid networks. What is needed to overcome these challenges is alternative ways of designing smart grid communication networks, using software defined approaches. This paper proposes a framework that supports software defined designs by combining the principles of the Internet of Things (IoT) paradigm and Machine-to-Machine (M2M) communication. Using the frameworks of software defined systems and virtualisation, our proposed architecture aims to provide a more flexible and affordable approach to developing and maintaining grid communication networks while offering a high level of network reliability, required for various smart grid applications. An evaluation of the implementation of this architecture in a design, based on a real city distribution grid, shows that a software defined communication network is easy to implement when using virtual machines running on existing computer infrastructure and that it is capable of supporting the network functions required for improving communication reliability. We conclude that this approach can potentially promote the adoption of smart grid by utilities while offering new innovative ways for smart grid developers to improve their grid designs.