{"title":"基于注视与头部相互作用的模拟遥控机器人的自行车与轮椅运动控制","authors":"Katsumi Minakata, Martin Thomsen, J. P. Hansen","doi":"10.1145/3197768.3201573","DOIUrl":null,"url":null,"abstract":"We present an interface for control of a telerobot that supports field-of-view panning, mode selections and keyboard typing by head- and gaze-interaction. The utility of the interface was tested by 19 able-bodied participants controlling a virtual telerobot from a wheelchair mounted on rollers which measure its wheel rotations, and by 14 able-bodied participants controlling the telerobot with a exercise bike. Both groups tried the interface twice: with head- and with gaze-interaction. Comparing wheelchair and bike locomotion control, the wheelchair simulator was faster and more manoeuvrable. Comparing gaze- and head-interaction, the two input methods were preferred by an equal number of participants. However, participants made more errors typing with gaze than with head. We conclude that virtual reality is a viable way of specifying and testing interfaces for telerobots and an effective probe for eliciting peoples subjective experiences.","PeriodicalId":130190,"journal":{"name":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bicycles and Wheelchairs for Locomotion Control of a Simulated Telerobot Supported by Gaze- and Head-Interaction\",\"authors\":\"Katsumi Minakata, Martin Thomsen, J. P. Hansen\",\"doi\":\"10.1145/3197768.3201573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an interface for control of a telerobot that supports field-of-view panning, mode selections and keyboard typing by head- and gaze-interaction. The utility of the interface was tested by 19 able-bodied participants controlling a virtual telerobot from a wheelchair mounted on rollers which measure its wheel rotations, and by 14 able-bodied participants controlling the telerobot with a exercise bike. Both groups tried the interface twice: with head- and with gaze-interaction. Comparing wheelchair and bike locomotion control, the wheelchair simulator was faster and more manoeuvrable. Comparing gaze- and head-interaction, the two input methods were preferred by an equal number of participants. However, participants made more errors typing with gaze than with head. We conclude that virtual reality is a viable way of specifying and testing interfaces for telerobots and an effective probe for eliciting peoples subjective experiences.\",\"PeriodicalId\":130190,\"journal\":{\"name\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3197768.3201573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197768.3201573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bicycles and Wheelchairs for Locomotion Control of a Simulated Telerobot Supported by Gaze- and Head-Interaction
We present an interface for control of a telerobot that supports field-of-view panning, mode selections and keyboard typing by head- and gaze-interaction. The utility of the interface was tested by 19 able-bodied participants controlling a virtual telerobot from a wheelchair mounted on rollers which measure its wheel rotations, and by 14 able-bodied participants controlling the telerobot with a exercise bike. Both groups tried the interface twice: with head- and with gaze-interaction. Comparing wheelchair and bike locomotion control, the wheelchair simulator was faster and more manoeuvrable. Comparing gaze- and head-interaction, the two input methods were preferred by an equal number of participants. However, participants made more errors typing with gaze than with head. We conclude that virtual reality is a viable way of specifying and testing interfaces for telerobots and an effective probe for eliciting peoples subjective experiences.